These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

397 related articles for article (PubMed ID: 32787232)

  • 1. Electroreduction Reaction Mechanism of Carbon Dioxide to C
    Zhang XG; Feng S; Zhan C; Wu DY; Zhao Y; Tian ZQ
    J Phys Chem Lett; 2020 Aug; 11(16):6593-6599. PubMed ID: 32787232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the Electrochemical Carbon Dioxide Reduction Reaction Mechanism of Lattice Tuning of Copper by Silver Single-Crystal Surface.
    Zheng T; Zhang XG
    Chemphyschem; 2024 Oct; ():e202400757. PubMed ID: 39363706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic Modulation at Atomically Dispersed Fe/Au Interface for Selective CO
    Shen X; Liu X; Wang S; Chen T; Zhang W; Cao L; Ding T; Lin Y; Liu D; Wang L; Zhang W; Yao T
    Nano Lett; 2021 Jan; 21(1):686-692. PubMed ID: 33305576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic Effects Determine the Selectivity of Planar Au-Cu Bimetallic Thin Films for Electrochemical CO
    Liu K; Ma M; Wu L; Valenti M; Cardenas-Morcoso D; Hofmann JP; Bisquert J; Gimenez S; Smith WA
    ACS Appl Mater Interfaces; 2019 May; 11(18):16546-16555. PubMed ID: 30969748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical Investigation of Cu-Au Alloy for Carbon Dioxide Electroreduction: Cu/Au Ratio Determining C
    Feng H; Chen C; Wang S; Zhang M; Ding H; Liang Y; Zhang X
    J Phys Chem Lett; 2022 Sep; 13(34):8002-8009. PubMed ID: 35984911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selectivities of Stepped Cu-M (M = Pt, Ni, Pd, Zn, Ag, Au) Bimetallic Surface Environment for C1 and C2 Pathways.
    Sun T; Wu J; Lu X; Tang X
    Langmuir; 2024 Apr; 40(17):9289-9298. PubMed ID: 38646870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-Selective Growth of fcc-2H-fcc Copper on Unconventional Phase Metal Nanomaterials for Highly Efficient Tandem CO
    Ma Y; Sun M; Xu H; Zhang Q; Lv J; Guo W; Hao F; Cui W; Wang Y; Yin J; Wen H; Lu P; Wang G; Zhou J; Yu J; Ye C; Gan L; Zhang D; Chu S; Gu L; Shao M; Huang B; Fan Z
    Adv Mater; 2024 Aug; 36(32):e2402979. PubMed ID: 38811011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Composite interfaces of g-C
    Gong Q; Xiong J; Zhou T; Bao W; Zhang X; Liu G; Qiao G; Xu Z
    Phys Chem Chem Phys; 2024 Mar; 26(13):10202-10213. PubMed ID: 38497211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cu(I) Reducibility Controls Ethylene vs Ethanol Selectivity on (100)-Textured Copper during Pulsed CO
    Tang Z; Nishiwaki E; Fritz KE; Hanrath T; Suntivich J
    ACS Appl Mater Interfaces; 2021 Mar; 13(12):14050-14055. PubMed ID: 33705088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphdiyne supported Ag-Cu tandem catalytic scheme for electrocatalytic reduction of CO
    Zhu Q; Hu Y; Chen H; Meng C; Shang Y; Hao C; Wei S; Wang Z; Lu X; Liu S
    Nanoscale; 2023 Feb; 15(5):2106-2113. PubMed ID: 36648138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bottom-up Growth of Convex Sphere with Adjustable Cu(0)/Cu(I) Interfaces for Effective C
    Liu H; Yang C; Bian T; Yu H; Zhou Y; Zhang Y
    Angew Chem Int Ed Engl; 2024 Jul; 63(28):e202404123. PubMed ID: 38702953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure- and Electrolyte-Sensitivity in CO
    ArĂ¡n-Ais RM; Gao D; Roldan Cuenya B
    Acc Chem Res; 2018 Nov; 51(11):2906-2917. PubMed ID: 30335937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Br, O-Modified Cu(111) Interface Promotes CO
    Xiong WF; Cai WZ; Wang J; Si DH; Gao SY; Li HF; Cao R
    Small Methods; 2024 Jun; ():e2301807. PubMed ID: 38856023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly dispersed Cu-Cu
    Zhang Z; Wang X; Tian H; Jiao H; Tian N; Bian L; Liu Y; Wang ZL
    J Colloid Interface Sci; 2024 May; 661():966-976. PubMed ID: 38330668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced CO Affinity on Cu Facilitates CO
    Li X; Qin M; Wu X; Lv X; Wang J; Wang Y; Wu HB
    Small; 2023 Sep; 19(39):e2302530. PubMed ID: 37259279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergized Cu/Pb Core/Shell Electrocatalyst for High-Efficiency CO
    Wang P; Yang H; Xu Y; Huang X; Wang J; Zhong M; Cheng T; Shao Q
    ACS Nano; 2021 Jan; 15(1):1039-1047. PubMed ID: 33377388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing CO
    Gao D; Zhang Y; Zhou Z; Cai F; Zhao X; Huang W; Li Y; Zhu J; Liu P; Yang F; Wang G; Bao X
    J Am Chem Soc; 2017 Apr; 139(16):5652-5655. PubMed ID: 28391686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hetero-Interfaces on Cu Electrode for Enhanced Electrochemical Conversion of CO
    Li X; Wang J; Lv X; Yang Y; Xu Y; Liu Q; Wu HB
    Nanomicro Lett; 2022 Jun; 14(1):134. PubMed ID: 35699835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CO Electroreduction Mechanism on Single-Atom Zn (101) Surfaces: Pathway to C2 Products.
    Wang Y; Zheng M; Zhou X; Pan Q; Li M
    Molecules; 2023 Jun; 28(12):. PubMed ID: 37375161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coordination Environment Engineering of Metal Centers in Coordination Polymers for Selective Carbon Dioxide Electroreduction toward Multicarbon Products.
    Wang J; Sun M; Xu H; Hao F; Wa Q; Su J; Zhou J; Wang Y; Yu J; Zhang P; Ye R; Chu S; Huang B; Shao M; Fan Z
    ACS Nano; 2024 Mar; 18(9):7192-7203. PubMed ID: 38385434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.