These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 32787234)

  • 1. Collector Droplet Behavior during Formation of Nanowire Junctions.
    Wang Y; Šikola T; Kolíbal M
    J Phys Chem Lett; 2020 Aug; 11(16):6498-6504. PubMed ID: 32787234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time observation of collector droplet oscillations during growth of straight nanowires.
    Kolíbal M; Vystavěl T; Varga P; Šikola T
    Nano Lett; 2014; 14(4):1756-61. PubMed ID: 24528181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In-situ observations of nanoscale effects in germanium nanowire growth with ternary eutectic alloys.
    Biswas S; O'Regan C; Morris MA; Holmes JD
    Small; 2015 Jan; 11(1):103-11. PubMed ID: 25196560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Limits of III-V Nanowire Growth Based on Droplet Dynamics.
    Tornberg M; Maliakkal CB; Jacobsson D; Dick KA; Johansson J
    J Phys Chem Lett; 2020 Apr; 11(8):2949-2954. PubMed ID: 32208728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-Time Study of Surface-Guided Nanowire Growth by
    Rothman A; Bukvišová K; Itzhak NR; Kaplan-Ashiri I; Kossoy AE; Sui X; Novák L; Šikola T; Kolíbal M; Joselevich E
    ACS Nano; 2022 Nov; 16(11):18757-18766. PubMed ID: 36305551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface-dependent scenarios for dissolution-driven motion of growing droplets.
    Curiotto S; Leroy F; Cheynis F; Müller P
    Sci Rep; 2017 Apr; 7(1):902. PubMed ID: 28424529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Synergic Effect of Atomic Hydrogen Adsorption and Catalyst Spreading on Ge Nanowire Growth Orientation and Kinking.
    Kolíbal M; Pejchal T; Vystavěl T; Šikola T
    Nano Lett; 2016 Aug; 16(8):4880-6. PubMed ID: 27458789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of the surface migration of gold on the growth of silicon nanowires.
    Hannon JB; Kodambaka S; Ross FM; Tromp RM
    Nature; 2006 Mar; 440(7080):69-71. PubMed ID: 16452928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoscale amorphization of GeTe nanowire with conductive atomic force microscope.
    Kim J
    J Nanosci Nanotechnol; 2014 Oct; 14(10):7688-92. PubMed ID: 25942849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Au-Assisted Substrate-Faceting for Inclined Nanowire Growth.
    Kang JH; Krizek F; Zaluska-Kotur M; Krogstrup P; Kacman P; Beidenkopf H; Shtrikman H
    Nano Lett; 2018 Jul; 18(7):4115-4122. PubMed ID: 29879360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proximity-induced supercurrent through topological insulator based nanowires for quantum computation studies.
    Bhattacharyya B; Awana VPS; Senguttuvan TD; Ojha VN; Husale S
    Sci Rep; 2018 Nov; 8(1):17237. PubMed ID: 30467364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlling nanowire growth through electric field-induced deformation of the catalyst droplet.
    Panciera F; Norton MM; Alam SB; Hofmann S; Mølhave K; Ross FM
    Nat Commun; 2016 Jul; 7():12271. PubMed ID: 27470536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Germanium-catalyzed hierarchical Al(2)O(3) and SiO(2) nanowire bunch arrays.
    Gu Z; Liu F; Howe JY; Parans Paranthaman M; Pan Z
    Nanoscale; 2009 Dec; 1(3):347-54. PubMed ID: 20648272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis, structure, and biocompatibility of pulsed laser-deposited TiN nanowires for implant applications.
    Faruque MK; Darkwa KM; Watson CY; Waterman JT; Kumar D
    J Biomed Mater Res A; 2012 Jul; 100(7):1831-8. PubMed ID: 22489070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solid-phase diffusion mechanism for GaAs nanowire growth.
    Persson AI; Larsson MW; Stenström S; Ohlsson BJ; Samuelson L; Wallenberg LR
    Nat Mater; 2004 Oct; 3(10):677-81. PubMed ID: 15378051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time observation of the solid-liquid-vapor dissolution of individual tin(IV) oxide nanowires.
    Hudak BM; Chang YJ; Yu L; Li G; Edwards DN; Guiton BS
    ACS Nano; 2014 Jun; 8(6):5441-8. PubMed ID: 24818706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical properties of heavily doped GaAs nanowires and electroluminescent nanowire structures.
    Lysov A; Offer M; Gutsche C; Regolin I; Topaloglu S; Geller M; Prost W; Tegude FJ
    Nanotechnology; 2011 Feb; 22(8):085702. PubMed ID: 21242617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Features of transport in ultrathin gold nanowire structures.
    Pud S; Kisner A; Heggen M; Belaineh D; Temirov R; Simon U; Offenhäusser A; Mourzina Y; Vitusevich S
    Small; 2013 Mar; 9(6):846-52. PubMed ID: 23125023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Barrierless Switching between a Liquid and Superheated Solid Catalyst during Nanowire Growth.
    Pinion CW; Hill DJ; Christesen JD; McBride JR; Cahoon JF
    J Phys Chem Lett; 2016 Oct; 7(20):4236-4242. PubMed ID: 27717285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Directed synthesis of germanium oxide nanowires by vapor-liquid-solid oxidation.
    Gunji M; Thombare SV; Hu S; McIntyre PC
    Nanotechnology; 2012 Sep; 23(38):385603. PubMed ID: 22947505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.