These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 32787533)
1. A Type 2 Deiodinase-Dependent Increase in An X; Ogawa-Wong A; Carmody C; Ambrosio R; Cicatiello AG; Luongo C; Salvatore D; Handy DE; Larsen PR; Wajner SM; Dentice M; Zavacki AM Thyroid; 2021 Jan; 31(1):115-127. PubMed ID: 32787533 [No Abstract] [Full Text] [Related]
2. A Global Loss of Dio2 Leads to Unexpected Changes in Function and Fiber Types of Slow Skeletal Muscle in Male Mice. Carmody C; Ogawa-Wong AN; Martin C; Luongo C; Zuidwijk M; Sager B; Petersen T; Roginski Guetter A; Janssen R; Wu EY; Bogaards S; Neumann NM; Hau K; Marsili A; Boelen A; Silva JE; Dentice M; Salvatore D; Wagers AJ; Larsen PR; Simonides WS; Zavacki AM Endocrinology; 2019 May; 160(5):1205-1222. PubMed ID: 30951174 [TBL] [Abstract][Full Text] [Related]
3. Early Developmental Disruption of Type 2 Deiodinase Pathway in Mouse Skeletal Muscle Does Not Impair Muscle Function. Ignacio DL; Silvestre DH; Anne-Palmer E; Bocco BM; Fonseca TL; Ribeiro MO; Gereben B; Bianco AC; Werneck-de-Castro JP Thyroid; 2017 Apr; 27(4):577-586. PubMed ID: 27967605 [TBL] [Abstract][Full Text] [Related]
7. Targeted disruption of the type 2 selenodeiodinase gene (DIO2) results in a phenotype of pituitary resistance to T4. Schneider MJ; Fiering SN; Pallud SE; Parlow AF; St Germain DL; Galton VA Mol Endocrinol; 2001 Dec; 15(12):2137-48. PubMed ID: 11731615 [TBL] [Abstract][Full Text] [Related]
8. Abnormal motor phenotype at adult stages in mice lacking type 2 deiodinase. Bárez-López S; Bosch-García D; Gómez-Andrés D; Pulido-Valdeolivas I; Montero-Pedrazuela A; Obregon MJ; Guadaño-Ferraz A PLoS One; 2014; 9(8):e103857. PubMed ID: 25083788 [TBL] [Abstract][Full Text] [Related]
9. Mice with a targeted deletion of the type 2 deiodinase are insulin resistant and susceptible to diet induced obesity. Marsili A; Aguayo-Mazzucato C; Chen T; Kumar A; Chung M; Lunsford EP; Harney JW; Van-Tran T; Gianetti E; Ramadan W; Chou C; Bonner-Weir S; Larsen PR; Silva JE; Zavacki AM PLoS One; 2011; 6(6):e20832. PubMed ID: 21698184 [TBL] [Abstract][Full Text] [Related]
10. Thyroid Hormone Receptor α Plays an Essential Role in Male Skeletal Muscle Myoblast Proliferation, Differentiation, and Response to Injury. Milanesi A; Lee JW; Kim NH; Liu YY; Yang A; Sedrakyan S; Kahng A; Cervantes V; Tripuraneni N; Cheng SY; Perin L; Brent GA Endocrinology; 2016 Jan; 157(1):4-15. PubMed ID: 26451739 [TBL] [Abstract][Full Text] [Related]
11. The FoxO3/type 2 deiodinase pathway is required for normal mouse myogenesis and muscle regeneration. Dentice M; Marsili A; Ambrosio R; Guardiola O; Sibilio A; Paik JH; Minchiotti G; DePinho RA; Fenzi G; Larsen PR; Salvatore D J Clin Invest; 2010 Nov; 120(11):4021-30. PubMed ID: 20978344 [TBL] [Abstract][Full Text] [Related]
12. Type II iodothyronine deiodinase provides intracellular 3,5,3'-triiodothyronine to normal and regenerating mouse skeletal muscle. Marsili A; Tang D; Harney JW; Singh P; Zavacki AM; Dentice M; Salvatore D; Larsen PR Am J Physiol Endocrinol Metab; 2011 Nov; 301(5):E818-24. PubMed ID: 21771965 [TBL] [Abstract][Full Text] [Related]
13. The endothelial cell secretome as a novel treatment to prime adipose-derived stem cells for improved wound healing in diabetes. Fromer MW; Chang S; Hagaman ALR; Koko KR; Nolan RS; Zhang P; Brown SA; Carpenter JP; Caputo FJ J Vasc Surg; 2018 Jul; 68(1):234-244. PubMed ID: 28760584 [TBL] [Abstract][Full Text] [Related]
14. Fatty acid binding protein 5 promotes tumor angiogenesis and activates the IL6/STAT3/VEGFA pathway in hepatocellular carcinoma. Pan L; Xiao H; Liao R; Chen Q; Peng C; Zhang Y; Mu T; Wu Z Biomed Pharmacother; 2018 Oct; 106():68-76. PubMed ID: 29957468 [TBL] [Abstract][Full Text] [Related]
15. Myoblast-conditioned media improve regeneration and revascularization of ischemic muscles in diabetic mice. Kozakowska M; Kotlinowski J; Grochot-Przeczek A; Ciesla M; Pilecki B; Derlacz R; Dulak J; Jozkowicz A Stem Cell Res Ther; 2015 Apr; 6(1):61. PubMed ID: 25889676 [TBL] [Abstract][Full Text] [Related]
16. Thyroid hormone signaling and deiodinase actions in muscle stem/progenitor cells. Ambrosio R; De Stefano MA; Di Girolamo D; Salvatore D Mol Cell Endocrinol; 2017 Dec; 459():79-83. PubMed ID: 28630021 [TBL] [Abstract][Full Text] [Related]
17. Loss of osteoglycin promotes angiogenesis in limb ischaemia mouse models via modulation of vascular endothelial growth factor and vascular endothelial growth factor receptor 2 signalling pathway. Wu QH; Ma Y; Ruan CC; Yang Y; Liu XH; Ge Q; Kong LR; Zhang JW; Yan C; Gao PJ Cardiovasc Res; 2017 Jan; 113(1):70-80. PubMed ID: 28069703 [TBL] [Abstract][Full Text] [Related]
18. Circ-100290 Positively Regulates Angiogenesis Induced by Conditioned Medium of Human Amnion-Derived Mesenchymal Stem Cells Through miR-449a/eNOS and miR-449a/VEGFA Axes. Tang Z; Wu X; Hu L; Xiao Y; Tan J; Zuo S; Shen M; Yuan X Int J Biol Sci; 2020; 16(12):2131-2144. PubMed ID: 32549760 [TBL] [Abstract][Full Text] [Related]
19. Vascular endothelial growth factor modulates skeletal myoblast function. Germani A; Di Carlo A; Mangoni A; Straino S; Giacinti C; Turrini P; Biglioli P; Capogrossi MC Am J Pathol; 2003 Oct; 163(4):1417-28. PubMed ID: 14507649 [TBL] [Abstract][Full Text] [Related]
20. Bone marrow mesenchymal stromal cells stimulate skeletal myoblast proliferation through the paracrine release of VEGF. Sassoli C; Pini A; Chellini F; Mazzanti B; Nistri S; Nosi D; Saccardi R; Quercioli F; Zecchi-Orlandini S; Formigli L PLoS One; 2012; 7(7):e37512. PubMed ID: 22815682 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]