These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 32787555)

  • 21. Joint modelling of longitudinal measurements and survival times via a multivariate copula approach.
    Zhang Z; Charalambous C; Foster P
    J Appl Stat; 2023; 50(13):2739-2759. PubMed ID: 37720246
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Revisiting methods for modeling longitudinal and survival data: Framingham Heart Study.
    Ngwa JS; Cabral HJ; Cheng DM; Gagnon DR; LaValley MP; Cupples LA
    BMC Med Res Methodol; 2021 Feb; 21(1):29. PubMed ID: 33568059
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantifying and comparing dynamic predictive accuracy of joint models for longitudinal marker and time-to-event in presence of censoring and competing risks.
    Blanche P; Proust-Lima C; Loubère L; Berr C; Dartigues JF; Jacqmin-Gadda H
    Biometrics; 2015 Mar; 71(1):102-113. PubMed ID: 25311240
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A dynamic model for predicting graft function in kidney recipients' upcoming follow up visits: A clinical application of artificial neural network.
    Rashidi Khazaee P; Bagherzadeh J; Niazkhani Z; Pirnejad H
    Int J Med Inform; 2018 Nov; 119():125-133. PubMed ID: 30342680
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of a time-varying covariate model and a joint model of time-to-event outcomes in the presence of measurement error and interval censoring: application to kidney transplantation.
    Campbell KR; Juarez-Colunga E; Grunwald GK; Cooper J; Davis S; Gralla J
    BMC Med Res Methodol; 2019 Jun; 19(1):130. PubMed ID: 31242848
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A copula-based approach for dynamic prediction of survival with a binary time-dependent covariate.
    Suresh K; Taylor JMG; Tsodikov A
    Stat Med; 2021 Oct; 40(23):4931-4946. PubMed ID: 34124771
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Technical note: Bayesian calibration of dynamic ruminant nutrition models.
    Reed KF; Arhonditsis GB; France J; Kebreab E
    J Dairy Sci; 2016 Aug; 99(8):6362-6370. PubMed ID: 27179874
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessment of the glomerular filtration rate (GFR) in kidney transplant recipients using Bayesian estimation of the iohexol clearance.
    Riff C; Besombes J; Gatault P; Barbet C; Büchler M; Blasco H; Halimi JM; Barin-Le Guellec C; Benz-de Bretagne I
    Clin Chem Lab Med; 2020 Mar; 58(4):577-587. PubMed ID: 31926067
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Flexible link functions in a joint hierarchical Gaussian process model.
    Su W; Wang X; Szczesniak RD
    Biometrics; 2021 Jun; 77(2):754-764. PubMed ID: 32413169
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamic predictions using flexible joint models of longitudinal and time-to-event data.
    Barrett J; Su L
    Stat Med; 2017 Apr; 36(9):1447-1460. PubMed ID: 28110499
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development and external validation study combining existing models and recent data into an up-to-date prediction model for evaluating kidneys from older deceased donors for transplantation.
    Ramspek CL; El Moumni M; Wali E; Heemskerk MBA; Pol RA; Crop MJ; Jansen NE; Hoitsma A; Dekker FW; van Diepen M; Moers C
    Kidney Int; 2021 Jun; 99(6):1459-1469. PubMed ID: 33340517
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Machine learning in predicting graft failure following kidney transplantation: A systematic review of published predictive models.
    Senanayake S; White N; Graves N; Healy H; Baboolal K; Kularatna S
    Int J Med Inform; 2019 Oct; 130():103957. PubMed ID: 31472443
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Predicting the Kidney Graft Survival Using Optimized African Buffalo-Based Artificial Neural Network.
    Chawla R; Balaji S; Alabdali RN; Naguib IA; Hamed NO; Zahran HY
    J Healthc Eng; 2022; 2022():6503714. PubMed ID: 35607394
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Individualized dynamic prediction of survival with the presence of intermediate events.
    Papageorgiou G; Mokhles MM; Takkenberg JJM; Rizopoulos D
    Stat Med; 2019 Dec; 38(30):5623-5640. PubMed ID: 31667885
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Bayesian mixture of semiparametric mixed-effects joint models for skewed-longitudinal and time-to-event data.
    Chen J; Huang Y
    Stat Med; 2015 Sep; 34(20):2820-43. PubMed ID: 25924891
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prediction of graft survival of living-donor kidney transplantation: nomograms or artificial neural networks?
    Akl A; Ismail AM; Ghoneim M
    Transplantation; 2008 Nov; 86(10):1401-6. PubMed ID: 19034010
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Joint models for longitudinal and time-to-event data in a case-cohort design.
    Baart SJ; Boersma E; Rizopoulos D
    Stat Med; 2019 May; 38(12):2269-2281. PubMed ID: 30706536
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nomogram that predicts graft survival probability following living-donor kidney transplant.
    Akl A; Mostafa A; Ghoneim MA
    Exp Clin Transplant; 2008 Mar; 6(1):30-6. PubMed ID: 18405242
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bayesian analysis for nonlinear mixed-effects models under heavy-tailed distributions.
    De la Cruz R
    Pharm Stat; 2014; 13(1):81-93. PubMed ID: 24106083
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bayesian nonparametric mixed-effects joint model for longitudinal-competing risks data analysis in presence of multiple data features.
    Lu T
    Stat Methods Med Res; 2017 Oct; 26(5):2407-2423. PubMed ID: 26265770
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.