These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
270 related articles for article (PubMed ID: 32787672)
1. Quantification of geographical proximity of sugarcane bagasse ash sources to ready-mix concrete plants for sustainable waste management and recycling. Athira G; Bahurudeen A; Vishnu VS Waste Manag Res; 2021 Feb; 39(2):279-290. PubMed ID: 32787672 [TBL] [Abstract][Full Text] [Related]
2. Use of waste recycling coal bottom ash and sugarcane bagasse ash as cement and sand replacement material to produce sustainable concrete. Bheel N; Khoso S; Baloch MH; Benjeddou O; Alwetaishi M Environ Sci Pollut Res Int; 2022 Jul; 29(35):52399-52411. PubMed ID: 35258727 [TBL] [Abstract][Full Text] [Related]
3. Short-term analysis on the combined use of sugarcane bagasse ash and rice husk ash as supplementary cementitious material in concrete production. Channa SH; Mangi SA; Bheel N; Soomro FA; Khahro SH Environ Sci Pollut Res Int; 2022 Jan; 29(3):3555-3564. PubMed ID: 34387820 [TBL] [Abstract][Full Text] [Related]
4. Agricultural Solid Waste as Source of Supplementary Cementitious Materials in Developing Countries. Chandra Paul S; Mbewe PBK; Kong SY; Šavija B Materials (Basel); 2019 Apr; 12(7):. PubMed ID: 30987183 [TBL] [Abstract][Full Text] [Related]
5. Use of Brazilian sugarcane bagasse ash in concrete as sand replacement. Sales A; Lima SA Waste Manag; 2010 Jun; 30(6):1114-22. PubMed ID: 20163947 [TBL] [Abstract][Full Text] [Related]
6. Experimental study on fresh, mechanical properties and embodied carbon of concrete blended with sugarcane bagasse ash, metakaolin, and millet husk ash as ternary cementitious material. Bheel N; Ali MOA; Tafsirojjaman ; Khahro SH; Keerio MA Environ Sci Pollut Res Int; 2022 Jan; 29(4):5224-5239. PubMed ID: 34417691 [TBL] [Abstract][Full Text] [Related]
7. Utilization of agricultural and industrial waste as replacement of cement in pavement quality concrete: a review. Pandey A; Kumar B Environ Sci Pollut Res Int; 2022 Apr; 29(17):24504-24546. PubMed ID: 35064477 [TBL] [Abstract][Full Text] [Related]
8. Combined effect of coconut shell and sugarcane bagasse ashes on the workability, mechanical properties and embodied carbon of concrete. Bheel N; Sohu S; Jhatial AA; Memon NA; Kumar A Environ Sci Pollut Res Int; 2022 Jan; 29(4):5207-5223. PubMed ID: 34420161 [TBL] [Abstract][Full Text] [Related]
9. Recycling of sugarcane bagasse ash waste in the production of clay bricks. Faria KC; Gurgel RF; Holanda JN J Environ Manage; 2012 Jun; 101():7-12. PubMed ID: 22387325 [TBL] [Abstract][Full Text] [Related]
10. End-of-Life Materials Used as Supplementary Cementitious Materials in the Concrete Industry. Nicoara AI; Stoica AE; Vrabec M; Šmuc Rogan N; Sturm S; Ow-Yang C; Gulgun MA; Bundur ZB; Ciuca I; Vasile BS Materials (Basel); 2020 Apr; 13(8):. PubMed ID: 32331388 [TBL] [Abstract][Full Text] [Related]
11. Adsorption of sugarcane vinasse effluent on bagasse fly ash: A parametric and kinetic study. Chingono KE; Sanganyado E; Bere E; Yalala B J Environ Manage; 2018 Oct; 224():182-190. PubMed ID: 30048849 [TBL] [Abstract][Full Text] [Related]
12. Environmental evaluation of green concretes versus conventional concrete by means of LCA. Turk J; Cotič Z; Mladenovič A; Šajna A Waste Manag; 2015 Nov; 45():194-205. PubMed ID: 26143535 [TBL] [Abstract][Full Text] [Related]
13. Wide-scale utilization of MSWI fly ashes in cement production and its impact on average heavy metal contents in cements: The case of Austria. Lederer J; Trinkel V; Fellner J Waste Manag; 2017 Feb; 60():247-258. PubMed ID: 27815031 [TBL] [Abstract][Full Text] [Related]
14. Very high volume fly ash green concrete for applications in India. Yu J; Mishra DK; Wu C; Leung CK Waste Manag Res; 2018 Jun; 36(6):520-526. PubMed ID: 29692220 [TBL] [Abstract][Full Text] [Related]
15. Resource recycling sustainability assessment in ready-mixed concrete manufactured on energy consumption and environmental safety in China. Wang CQ; Wang PX; Zhang MT Environ Sci Pollut Res Int; 2021 Apr; 28(15):19521-19529. PubMed ID: 33655473 [TBL] [Abstract][Full Text] [Related]
16. Influence of Sugarcane Bagasse Ash and Silica Fume on the Mechanical and Durability Properties of Concrete. Farrant WE; Babafemi AJ; Kolawole JT; Panda B Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591351 [TBL] [Abstract][Full Text] [Related]
17. Briquetting of sugarcane bagasse as a proper waste management technology in Vietnam. Brunerová A; Roubík H; Brožek M; Van Dung D; Phung LD; Hasanudin U; Iryani DA; Herák D Waste Manag Res; 2020 Nov; 38(11):1239-1250. PubMed ID: 32686610 [TBL] [Abstract][Full Text] [Related]
18. Valorization of solid waste in sugar factories with possible applications in India : a review. Balakrishnan M; Batra VS J Environ Manage; 2011 Nov; 92(11):2886-91. PubMed ID: 21767900 [TBL] [Abstract][Full Text] [Related]
19. Recycling of biomass and coal fly ash as cement replacement material and its effect on hydration and carbonation of concrete. Teixeira ER; Camões A; Branco FG; Aguiar JB; Fangueiro R Waste Manag; 2019 Jul; 94():39-48. PubMed ID: 31279394 [TBL] [Abstract][Full Text] [Related]
20. Reuse of sugarcane bagasse ash (SCBA) to produce ceramic materials. Souza AE; Teixeira SR; Santos GT; Costa FB; Longo E J Environ Manage; 2011 Oct; 92(10):2774-80. PubMed ID: 21733619 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]