BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 32787954)

  • 1. Modeling and analysis of Hi-C data by HiSIF identifies characteristic promoter-distal loops.
    Zhou Y; Cheng X; Yang Y; Li T; Li J; Huang TH; Wang J; Lin S; Jin VX
    Genome Med; 2020 Aug; 12(1):69. PubMed ID: 32787954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational Processing and Quality Control of Hi-C, Capture Hi-C and Capture-C Data.
    Hansen P; Gargano M; Hecht J; Ibn-Salem J; Karlebach G; Roehr JT; Robinson PN
    Genes (Basel); 2019 Jul; 10(7):. PubMed ID: 31323892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HiC-bench: comprehensive and reproducible Hi-C data analysis designed for parameter exploration and benchmarking.
    Lazaris C; Kelly S; Ntziachristos P; Aifantis I; Tsirigos A
    BMC Genomics; 2017 Jan; 18(1):22. PubMed ID: 28056762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LASCA: loop and significant contact annotation pipeline.
    Luzhin AV; Golov AK; Gavrilov AA; Velichko AK; Ulianov SV; Razin SV; Kantidze OL
    Sci Rep; 2021 Mar; 11(1):6361. PubMed ID: 33737718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chrom-Lasso: a lasso regression-based model to detect functional interactions using Hi-C data.
    Lu J; Wang X; Sun K; Lan X
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34013331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SnapHiC: a computational pipeline to identify chromatin loops from single-cell Hi-C data.
    Yu M; Abnousi A; Zhang Y; Li G; Lee L; Chen Z; Fang R; Lagler TM; Yang Y; Wen J; Sun Q; Li Y; Ren B; Hu M
    Nat Methods; 2021 Sep; 18(9):1056-1059. PubMed ID: 34446921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mustache: multi-scale detection of chromatin loops from Hi-C and Micro-C maps using scale-space representation.
    Roayaei Ardakany A; Gezer HT; Lonardi S; Ay F
    Genome Biol; 2020 Sep; 21(1):256. PubMed ID: 32998764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. hicGAN infers super resolution Hi-C data with generative adversarial networks.
    Liu Q; Lv H; Jiang R
    Bioinformatics; 2019 Jul; 35(14):i99-i107. PubMed ID: 31510693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An integrated model for detecting significant chromatin interactions from high-resolution Hi-C data.
    Carty M; Zamparo L; Sahin M; González A; Pelossof R; Elemento O; Leslie CS
    Nat Commun; 2017 May; 8():15454. PubMed ID: 28513628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Joint annotation of chromatin state and chromatin conformation reveals relationships among domain types and identifies domains of cell-type-specific expression.
    Libbrecht MW; Ay F; Hoffman MM; Gilbert DM; Bilmes JA; Noble WS
    Genome Res; 2015 Apr; 25(4):544-57. PubMed ID: 25677182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characteristic arrangement of nucleosomes is predictive of chromatin interactions at kilobase resolution.
    Zhang H; Li F; Jia Y; Xu B; Zhang Y; Li X; Zhang Z
    Nucleic Acids Res; 2017 Dec; 45(22):12739-12751. PubMed ID: 29036650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MSTD: an efficient method for detecting multi-scale topological domains from symmetric and asymmetric 3D genomic maps.
    Ye Y; Gao L; Zhang S
    Nucleic Acids Res; 2019 Jun; 47(11):e65. PubMed ID: 30941409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HiC-DC+ enables systematic 3D interaction calls and differential analysis for Hi-C and HiChIP.
    Sahin M; Wong W; Zhan Y; Van Deynze K; Koche R; Leslie CS
    Nat Commun; 2021 Jun; 12(1):3366. PubMed ID: 34099725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SpectralTAD: an R package for defining a hierarchy of topologically associated domains using spectral clustering.
    Cresswell KG; Stansfield JC; Dozmorov MG
    BMC Bioinformatics; 2020 Jul; 21(1):319. PubMed ID: 32689928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. cLoops2: a full-stack comprehensive analytical tool for chromatin interactions.
    Cao Y; Liu S; Ren G; Tang Q; Zhao K
    Nucleic Acids Res; 2022 Jan; 50(1):57-71. PubMed ID: 34928392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leveraging three-dimensional chromatin architecture for effective reconstruction of enhancer-target gene regulatory interactions.
    Salviato E; Djordjilović V; Hariprakash JM; Tagliaferri I; Pal K; Ferrari F
    Nucleic Acids Res; 2021 Sep; 49(17):e97. PubMed ID: 34197622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rich Chromatin Structure Prediction from Hi-C Data.
    Malik L; Patro R
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(5):1448-1458. PubMed ID: 29994683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterizing chromatin interactions of regulatory elements and nucleosome positions, using Hi-C, Micro-C, and promoter capture Micro-C.
    Lee BH; Wu Z; Rhie SK
    Epigenetics Chromatin; 2022 Dec; 15(1):41. PubMed ID: 36544209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and utilization of copy number information for correcting Hi-C contact map of cancer cell lines.
    Khalil AIS; Muzaki SRBM; Chattopadhyay A; Sanyal A
    BMC Bioinformatics; 2020 Nov; 21(1):506. PubMed ID: 33160308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. peakC: a flexible, non-parametric peak calling package for 4C and Capture-C data.
    Geeven G; Teunissen H; de Laat W; de Wit E
    Nucleic Acids Res; 2018 Sep; 46(15):e91. PubMed ID: 29800273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.