BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 32788257)

  • 1. Tissue bridges predict neuropathic pain emergence after spinal cord injury.
    Pfyffer D; Vallotton K; Curt A; Freund P
    J Neurol Neurosurg Psychiatry; 2020 Oct; 91(10):1111-1117. PubMed ID: 32788257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predictive Value of Midsagittal Tissue Bridges on Functional Recovery After Spinal Cord Injury.
    Pfyffer D; Vallotton K; Curt A; Freund P
    Neurorehabil Neural Repair; 2021 Jan; 35(1):33-43. PubMed ID: 33190619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Width and neurophysiologic properties of tissue bridges predict recovery after cervical injury.
    Vallotton K; Huber E; Sutter R; Curt A; Hupp M; Freund P
    Neurology; 2019 Jun; 92(24):e2793-e2802. PubMed ID: 31092621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Segmental hypersensitivity and spinothalamic function in spinal cord injury pain.
    Finnerup NB; Sørensen L; Biering-Sørensen F; Johannesen IL; Jensen TS
    Exp Neurol; 2007 Sep; 207(1):139-49. PubMed ID: 17628539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Progressive neurodegeneration following spinal cord injury: Implications for clinical trials.
    Ziegler G; Grabher P; Thompson A; Altmann D; Hupp M; Ashburner J; Friston K; Weiskopf N; Curt A; Freund P
    Neurology; 2018 Apr; 90(14):e1257-e1266. PubMed ID: 29514946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Residual spinothalamic tract pathways predict development of central pain after spinal cord injury.
    Wasner G; Lee BB; Engel S; McLachlan E
    Brain; 2008 Sep; 131(Pt 9):2387-400. PubMed ID: 18669485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spinal cord injury below-level neuropathic pain relief with dorsal root entry zone microcoagulation performed caudal to level of complete spinal cord transection.
    Falci S; Indeck C; Barnkow D
    J Neurosurg Spine; 2018 Jun; 28(6):612-620. PubMed ID: 29498583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supraspinal nociceptive networks in neuropathic pain after spinal cord injury.
    Huynh V; Lütolf R; Rosner J; Luechinger R; Curt A; Kollias S; Hubli M; Michels L
    Hum Brain Mapp; 2021 Aug; 42(12):3733-3749. PubMed ID: 34132441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tissue bridges predict recovery after traumatic and ischemic thoracic spinal cord injury.
    Pfyffer D; Huber E; Sutter R; Curt A; Freund P
    Neurology; 2019 Oct; 93(16):e1550-e1560. PubMed ID: 31541012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo evidence of remote neural degeneration in the lumbar enlargement after cervical injury.
    David G; Seif M; Huber E; Hupp M; Rosner J; Dietz V; Weiskopf N; Mohammadi S; Freund P
    Neurology; 2019 Mar; 92(12):e1367-e1377. PubMed ID: 30770423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The presence or absence of midsagittal tissue bridges and walking: a retrospective cohort study in spinal cord injury.
    Thornton WA; Marzloff G; Ryder S; Best A; Rasheed K; Coons D; Smith AC
    Spinal Cord; 2023 Aug; 61(8):436-440. PubMed ID: 37120699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying Discomplete Spinal Lesions: New Evidence from Pain-Autonomic Interaction in Spinal Cord Injury.
    Lütolf R; Rosner J; Curt A; Hubli M
    J Neurotrauma; 2021 Dec; 38(24):3456-3466. PubMed ID: 34806429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Midsagittal tissue bridges are associated with walking ability in incomplete spinal cord injury: A magnetic resonance imaging case series.
    O'Dell DR; Weber KA; Berliner JC; Elliott JM; Connor JR; Cummins DP; Heller KA; Hubert JS; Kates MJ; Mendoza KR; Smith AC
    J Spinal Cord Med; 2020 Mar; 43(2):268-271. PubMed ID: 30346248
    [No Abstract]   [Full Text] [Related]  

  • 14. Are midsagittal tissue bridges predictive of outcome after cervical spinal cord injury?
    Huber E; Lachappelle P; Sutter R; Curt A; Freund P
    Ann Neurol; 2017 May; 81(5):740-748. PubMed ID: 28393423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cortical and white matter alterations in patients with neuropathic pain after spinal cord injury.
    Yoon EJ; Kim YK; Shin HI; Lee Y; Kim SE
    Brain Res; 2013 Dec; 1540():64-73. PubMed ID: 24125807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spinal cord pathology revealed by MRI in traumatic spinal cord injury.
    Pfyffer D; Freund P
    Curr Opin Neurol; 2021 Dec; 34(6):789-795. PubMed ID: 34619692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thalamic activity and biochemical changes in individuals with neuropathic pain after spinal cord injury.
    Gustin SM; Wrigley PJ; Youssef AM; McIndoe L; Wilcox SL; Rae CD; Edden RAE; Siddall PJ; Henderson LA
    Pain; 2014 May; 155(5):1027-1036. PubMed ID: 24530612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wallerian degeneration in cervical spinal cord tracts is commonly seen in routine T2-weighted MRI after traumatic spinal cord injury and is associated with impairment in a retrospective study.
    Fischer T; Stern C; Freund P; Schubert M; Sutter R
    Eur Radiol; 2021 May; 31(5):2923-2932. PubMed ID: 33125565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alterations in power spectral density in motor- and pain-related networks on neuropathic pain after spinal cord injury.
    Park E; Cha H; Kim E; Min YS; Kim AR; Lee HJ; Jung TD; Chang Y
    Neuroimage Clin; 2020; 28():102342. PubMed ID: 32798908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gabapentin effect on neuropathic pain compared among patients with spinal cord injury and different durations of symptoms.
    Ahn SH; Park HW; Lee BS; Moon HW; Jang SH; Sakong J; Bae JH
    Spine (Phila Pa 1976); 2003 Feb; 28(4):341-6; discussion 346-7. PubMed ID: 12590206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.