BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 32788591)

  • 1. Pyropia yezoensis genome reveals diverse mechanisms of carbon acquisition in the intertidal environment.
    Wang D; Yu X; Xu K; Bi G; Cao M; Zelzion E; Fu C; Sun P; Liu Y; Kong F; Du G; Tang X; Yang R; Wang J; Tang L; Wang L; Zhao Y; Ge Y; Zhuang Y; Mo Z; Chen Y; Gao T; Guan X; Chen R; Qu W; Sun B; Bhattacharya D; Mao Y
    Nat Commun; 2020 Aug; 11(1):4028. PubMed ID: 32788591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The carbonate concentration mechanism of Pyropia yezoensis (Rhodophyta): evidence from transcriptomics and biochemical data.
    Zhang B; Xie X; Liu X; He L; Sun Y; Wang G
    BMC Plant Biol; 2020 Sep; 20(1):424. PubMed ID: 32933475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide analysis of HSP70 gene superfamily in Pyropia yezoensis (Bangiales, Rhodophyta): identification, characterization and expression profiles in response to dehydration stress.
    Yu X; Mo Z; Tang X; Gao T; Mao Y
    BMC Plant Biol; 2021 Sep; 21(1):435. PubMed ID: 34560838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Different responses to heat shock stress revealed heteromorphic adaptation strategy of Pyropia haitanensis (Bangiales, Rhodophyta).
    Luo Q; Zhu Z; Zhu Z; Yang R; Qian F; Chen H; Yan X
    PLoS One; 2014; 9(4):e94354. PubMed ID: 24709783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of Functional Verification to Abiotic Stress through Antioxidant Gene Transformation of
    Lee HJ; Yang HY; Choi JI
    J Microbiol Biotechnol; 2018 Jul; 28(7):1217-1224. PubMed ID: 29913549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional Characterization and Evolutionary Analysis of Glycine-Betaine Biosynthesis Pathway in Red Seaweed
    Mao Y; Chen N; Cao M; Chen R; Guan X; Wang D
    Mar Drugs; 2019 Jan; 17(1):. PubMed ID: 30669580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative transcriptome profiling of Pyropia yezoensis (Ueda) M.S. Hwang & H.G. Choi in response to temperature stresses.
    Sun P; Mao Y; Li G; Cao M; Kong F; Wang L; Bi G
    BMC Genomics; 2015 Jun; 16(1):463. PubMed ID: 26081586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A unique life cycle transition in the red seaweed
    Mikami K; Li C; Irie R; Hama Y
    Commun Biol; 2019; 2():299. PubMed ID: 31396579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased iron availability resulting from increased CO
    Chen B; Zou D; Yang Y
    Chemosphere; 2017 Apr; 173():444-451. PubMed ID: 28131089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization and expression profiles of small heat shock proteins in the marine red alga Pyropia yezoensis.
    Uji T; Gondaira Y; Fukuda S; Mizuta H; Saga N
    Cell Stress Chaperones; 2019 Jan; 24(1):223-233. PubMed ID: 30632066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene expression profiles of Pyropia yezoensis in response to dehydration and rehydration stresses.
    Sun P; Tang X; Bi G; Xu K; Kong F; Mao Y
    Mar Genomics; 2019 Feb; 43():43-49. PubMed ID: 30279127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Life cycle and reproduction dynamics of Bangiales in response to environmental stresses.
    Mikami K; Takahashi M
    Semin Cell Dev Biol; 2023 Jan; 134():14-26. PubMed ID: 35428563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insights into the Ancient Adaptation to Intertidal Environments by Red Algae Based on a Genomic and Multiomics Investigation of Neoporphyra haitanensis.
    Chen H; Chu JS; Chen J; Luo Q; Wang H; Lu R; Zhu Z; Yuan G; Yi X; Mao Y; Lu C; Wang Z; Gu D; Jin Z; Zhang C; Weng Z; Li S; Yan X; Yang R
    Mol Biol Evol; 2022 Jan; 39(1):. PubMed ID: 34730826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of sodium bicarbonate concentration on growth, photosynthesis, and carbonic anhydrase activity of macroalgae Gracilariopsis lemaneiformis, Gracilaria vermiculophylla, and Gracilaria chouae (Gracilariales, Rhodophyta).
    Zhou W; Sui Z; Wang J; Hu Y; Kang KH; Hong HR; Niaz Z; Wei H; Du Q; Peng C; Mi P; Que Z
    Photosynth Res; 2016 Jun; 128(3):259-70. PubMed ID: 26960545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptome-wide identification of optimal reference genes for expression analysis of Pyropia yezoensis responses to abiotic stress.
    Gao D; Kong F; Sun P; Bi G; Mao Y
    BMC Genomics; 2018 Apr; 19(1):251. PubMed ID: 29653512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into the carbonic anhydrases and autotrophic carbon dioxide fixation pathways of high CO
    Khandavalli LVNS; Lodha T; Abdullah M; Guruprasad L; Chintalapati S; Chintalapati VR
    Microbiol Res; 2018 Oct; 215():130-140. PubMed ID: 30172299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A shell-formation related carbonic anhydrase in Crassostrea gigas modulates intracellular calcium against CO
    Wang X; Wang M; Jia Z; Song X; Wang L; Song L
    Aquat Toxicol; 2017 Aug; 189():216-228. PubMed ID: 28666131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photosynthetic Performance of the Red Alga Pyropia haitanensis During Emersion, With Special Reference to Effects of Solar UV Radiation, Dehydration and Elevated CO2 Concentration.
    Xu J; Gao K
    Photochem Photobiol; 2015 Nov; 91(6):1376-81. PubMed ID: 26384590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ASSESSMENT OF PHOTOSYNTHETIC PERFORMANCE OF PORPHYRA YEZOENSIS (BANGIALES, RHODOPHYTA) IN CONCHOCELIS PHASE(1).
    Xu D; Qiao H; Zhu J; Xu P; Liang C; Zhang X; Ye N; Yang W
    J Phycol; 2012 Apr; 48(2):467-70. PubMed ID: 27009735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of Plastid Expression Vector and Development of Genetic Transformation System for the Seaweed Pyropia yezoensis.
    Kong F; Zhao H; Liu W; Li N; Mao Y
    Mar Biotechnol (NY); 2017 Apr; 19(2):147-156. PubMed ID: 28233074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.