These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Role of GTP hydrolysis in microtubule dynamics: information from a slowly hydrolyzable analogue, GMPCPP. Hyman AA; Salser S; Drechsel DN; Unwin N; Mitchison TJ Mol Biol Cell; 1992 Oct; 3(10):1155-67. PubMed ID: 1421572 [TBL] [Abstract][Full Text] [Related]
4. Diverse balances of tubulin interactions and shape change drive and interrupt microtubule depolymerization. Bollinger JA; Stevens MJ Soft Matter; 2019 Oct; 15(40):8137-8146. PubMed ID: 31593193 [TBL] [Abstract][Full Text] [Related]
5. Thermodynamic and structural analysis of microtubule assembly: the role of GTP hydrolysis. Vulevic B; Correia JJ Biophys J; 1997 Mar; 72(3):1357-75. PubMed ID: 9138581 [TBL] [Abstract][Full Text] [Related]
6. The free energy for hydrolysis of a microtubule-bound nucleotide triphosphate is near zero: all of the free energy for hydrolysis is stored in the microtubule lattice. Caplow M; Ruhlen RL; Shanks J J Cell Biol; 1994 Nov; 127(3):779-88. PubMed ID: 7962059 [TBL] [Abstract][Full Text] [Related]
7. Evidence that a single monolayer tubulin-GTP cap is both necessary and sufficient to stabilize microtubules. Caplow M; Shanks J Mol Biol Cell; 1996 Apr; 7(4):663-75. PubMed ID: 8730106 [TBL] [Abstract][Full Text] [Related]
8. The minimum GTP cap required to stabilize microtubules. Drechsel DN; Kirschner MW Curr Biol; 1994 Dec; 4(12):1053-61. PubMed ID: 7704569 [TBL] [Abstract][Full Text] [Related]
9. Structural changes at microtubule ends accompanying GTP hydrolysis: information from a slowly hydrolyzable analogue of GTP, guanylyl (alpha,beta)methylenediphosphonate. Müller-Reichert T; Chrétien D; Severin F; Hyman AA Proc Natl Acad Sci U S A; 1998 Mar; 95(7):3661-6. PubMed ID: 9520422 [TBL] [Abstract][Full Text] [Related]
10. Mechanism of tubulin assembly: guanosine 5'-triphosphate hydrolysis decreases the rate of microtubule depolymerization. Bonne D; Pantaloni D Biochemistry; 1982 Mar; 21(5):1075-81. PubMed ID: 7074050 [TBL] [Abstract][Full Text] [Related]
11. Nucleotide-dependent bending flexibility of tubulin regulates microtubule assembly. Wang HW; Nogales E Nature; 2005 Jun; 435(7044):911-5. PubMed ID: 15959508 [TBL] [Abstract][Full Text] [Related]
12. High-resolution microtubule structures reveal the structural transitions in αβ-tubulin upon GTP hydrolysis. Alushin GM; Lander GC; Kellogg EH; Zhang R; Baker D; Nogales E Cell; 2014 May; 157(5):1117-29. PubMed ID: 24855948 [TBL] [Abstract][Full Text] [Related]
13. Conformational changes in tubulin in GMPCPP and GDP-taxol microtubules observed by cryoelectron microscopy. Yajima H; Ogura T; Nitta R; Okada Y; Sato C; Hirokawa N J Cell Biol; 2012 Aug; 198(3):315-22. PubMed ID: 22851320 [TBL] [Abstract][Full Text] [Related]
14. Detection of GTP-tubulin conformation in vivo reveals a role for GTP remnants in microtubule rescues. Dimitrov A; Quesnoit M; Moutel S; Cantaloube I; Poüs C; Perez F Science; 2008 Nov; 322(5906):1353-6. PubMed ID: 18927356 [TBL] [Abstract][Full Text] [Related]
18. Intrinsic bending and structural rearrangement of tubulin dimer: molecular dynamics simulations and coarse-grained analysis. Gebremichael Y; Chu JW; Voth GA Biophys J; 2008 Sep; 95(5):2487-99. PubMed ID: 18515385 [TBL] [Abstract][Full Text] [Related]
19. How tubulin subunits are lost from the shortening ends of microtubules. Tran PT; Joshi P; Salmon ED J Struct Biol; 1997 Mar; 118(2):107-18. PubMed ID: 9126637 [TBL] [Abstract][Full Text] [Related]
20. Structural mass spectrometry of the alpha beta-tubulin dimer supports a revised model of microtubule assembly. Bennett MJ; Chik JK; Slysz GW; Luchko T; Tuszynski J; Sackett DL; Schriemer DC Biochemistry; 2009 Jun; 48(22):4858-70. PubMed ID: 19388626 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]