These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 32788788)

  • 1. Free-space 16-ary orbital angular momentum coded optical communication system based on chaotic interleaving and convolutional neural networks.
    El-Meadawy SA; Shalaby HMH; Ismail NA; Abd El-Samie FE; Farghal AEA
    Appl Opt; 2020 Aug; 59(23):6966-6976. PubMed ID: 32788788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Turbo-coded 16-ary OAM shift keying FSO communication system combining the CNN-based adaptive demodulator.
    Tian Q; Li Z; Hu K; Zhu L; Pan X; Zhang Q; Wang Y; Tian F; Yin X; Xin X
    Opt Express; 2018 Oct; 26(21):27849-27864. PubMed ID: 30469843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting the orbital angular momentum of atmospheric turbulence for OAM-based free-space optical communication.
    Hu W; Yang J; Zhu L; Wang A
    Opt Express; 2023 Dec; 31(25):41060-41071. PubMed ID: 38087514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance analysis of a LDPC coded OAM-based UCA FSO system exploring linear equalization with channel estimation over atmospheric turbulence.
    Zhang Y; Wang P; Liu T; Guo L; Li Y; Wang W
    Opt Express; 2018 Aug; 26(17):22182-22196. PubMed ID: 30130915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 65,536-ary orbital angular momentum-shift keying free-space optical communication based on few-shot learning.
    Chen W; Lin Q; Chen W; Zhang Z; Zhuang Z; Su Z; Zhang L
    Opt Lett; 2023 Apr; 48(7):1886-1889. PubMed ID: 37221791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Research on Orbital Angular Momentum Recognition Technology Based on a Convolutional Neural Network.
    Li X; Sun L; Huang J; Zeng F
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Turbulence heterodyne coherent mitigation of orbital angular momentum multiplexing in a free space optical link by auxiliary light.
    Yang C; Xu C; Ni W; Gan Y; Hou J; Chen S
    Opt Express; 2017 Oct; 25(21):25612-25624. PubMed ID: 29041226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-step system for image receiving in OAM-SK-FSO link.
    Li Z; Su J; Zhao X
    Opt Express; 2020 Oct; 28(21):30520-30541. PubMed ID: 33115052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 1024-ary composite OAM shift keying for free-space optical communication system decoded by a two-step neural network.
    Zhu J; Fan M; Pu Y; Li H; Wang S
    Opt Lett; 2023 May; 48(10):2692-2695. PubMed ID: 37186742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-stage cross-talk mitigation in an orbital-angular-momentum-based free-space optical communication system.
    Qu Z; Djordjevic IB
    Opt Lett; 2017 Aug; 42(16):3125-3128. PubMed ID: 28809889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Statistical model for the weak turbulence-induced attenuation and crosstalk in free space communication systems with orbital angular momentum.
    Pan Y; Wang P; Wang W; Li S; Cheng M; Guo L
    Opt Express; 2021 Apr; 29(8):12644-12662. PubMed ID: 33985018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 768-ary Laguerre-Gaussian-mode shift keying free-space optical communication based on convolutional neural networks.
    Luan H; Lin D; Li K; Meng W; Gu M; Fang X
    Opt Express; 2021 Jun; 29(13):19807-19818. PubMed ID: 34266083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning approach to OAM beam demultiplexing via convolutional neural networks.
    Doster T; Watnik AT
    Appl Opt; 2017 Apr; 56(12):3386-3396. PubMed ID: 28430266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive turbulence compensation with a hybrid input-output algorithm in orbital angular momentum-based free-space optical communication.
    Yin X; Chang H; Cui X; Ma JX; Wang YJ; Wu GH; Zhang L; Xin X
    Appl Opt; 2018 Sep; 57(26):7644-7650. PubMed ID: 30461834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel adaptive momentum method for medical image classification using convolutional neural network.
    Aytaç UC; Güneş A; Ajlouni N
    BMC Med Imaging; 2022 Mar; 22(1):34. PubMed ID: 35232390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conditional convolutional GAN-based adaptive demodulator for OAM-SK-FSO communication.
    Han Z; Chen X; Wang Y; Cai Y
    Opt Express; 2024 Mar; 32(7):11629-11642. PubMed ID: 38571005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Turbulence-induced channel crosstalk in an orbital angular momentum-multiplexed free-space optical link.
    Anguita JA; Neifeld MA; Vasic BV
    Appl Opt; 2008 May; 47(13):2414-29. PubMed ID: 18449308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive demodulation by deep-learning-based identification of fractional orbital angular momentum modes with structural distortion due to atmospheric turbulence.
    Na Y; Ko DK
    Sci Rep; 2021 Dec; 11(1):23505. PubMed ID: 34873262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning based atmospheric turbulence compensation for orbital angular momentum beam distortion and communication.
    Liu J; Wang P; Zhang X; He Y; Zhou X; Ye H; Li Y; Xu S; Chen S; Fan D
    Opt Express; 2019 Jun; 27(12):16671-16688. PubMed ID: 31252890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Joint atmospheric turbulence detection and adaptive demodulation technique using the CNN for the OAM-FSO communication.
    Li J; Zhang M; Wang D; Wu S; Zhan Y
    Opt Express; 2018 Apr; 26(8):10494-10508. PubMed ID: 29715985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.