These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 32788811)

  • 1. Design of all-optical D flip-flop using photonic crystal waveguides for optical computing and networking.
    Rao DGS; Palacharla V; Swarnakar S; Kumar S
    Appl Opt; 2020 Aug; 59(23):7139-7143. PubMed ID: 32788811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photonic Crystal Flip-Flops: Recent Developments in All Optical Memory Components.
    Pugachov Y; Gulitski M; Malka D
    Materials (Basel); 2023 Sep; 16(19):. PubMed ID: 37834604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of All-Optical D Flip Flop Memory Unit Based on Photonic Crystal.
    Pugachov Y; Gulitski M; Malka D
    Nanomaterials (Basel); 2024 Aug; 14(16):. PubMed ID: 39195360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrafast all-optical flip-flop based on passive micro Sagnac waveguide ring with photonic crystal fiber.
    Xu M; Yang W; Hong T; Kang T; Ji J; Wang K
    Appl Opt; 2017 Jun; 56(16):4577-4584. PubMed ID: 29047595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of all-optical reversible logic gates using photonic crystal waveguides for optical computing and photonic integrated circuits.
    Rao DGS; Swarnakar S; Kumar S
    Appl Opt; 2020 Dec; 59(35):11003-11012. PubMed ID: 33361925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene-based plasmonic electro-optical SR flip-flop with an ultra-compact footprint.
    Rezaei MH; Zarifkar A
    Opt Express; 2020 Aug; 28(17):25167-25179. PubMed ID: 32907044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and performance enhancement of an all-optical demultiplexer for optical computing applications employing photonic crystals.
    Swarnakar S; Saikiran Y; Chavadi Yashwanth K; Bhavan Kumar K; Venkata Rakesh N; Kumar S
    Appl Opt; 2023 May; 62(14):3567-3573. PubMed ID: 37706971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultra-compact III‒V-on-Si photonic crystal memory for flip-flop operation at 5 Gb/s.
    Fitsios D; Alexoudi T; Bazin A; Monnier P; Raj R; Miliou A; Kanellos GT; Pleros N; Raineri F
    Opt Express; 2016 Feb; 24(4):4270-7. PubMed ID: 26907074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photonic crystal based design of a 3-bit all-optical parity checker and generator for all-optical computing.
    Anagha EG; Jeyachitra RK
    Appl Opt; 2022 Dec; 61(35):10594-10602. PubMed ID: 36607123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SEU Hardened D Flip-Flop Design with Low Area Overhead.
    Yin C; Zhou Y; Liu H; Xiang Q
    Micromachines (Basel); 2023 Sep; 14(10):. PubMed ID: 37893273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultra-broadband and low-loss 3  dB optical power splitter based on adiabatic tapered silicon waveguides.
    Wang Y; Gao S; Wang K; Skafidas E
    Opt Lett; 2016 May; 41(9):2053-6. PubMed ID: 27128072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Data on quantum dot cellular automata based flip flops for designing serial-in-serial-out shift register.
    Kalyan BS; Singh B; Devi R
    Data Brief; 2024 Feb; 52():110019. PubMed ID: 38260862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultracompact photonic-waveguide circuits in Si-pillar photonic-crystal structures for integrated nanophotonic switches.
    Tokushima M; Olmos JJ; Kitayama K
    J Nanosci Nanotechnol; 2010 Mar; 10(3):1626-34. PubMed ID: 20355549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of discontinuities on photonic waveguides.
    Bhatt GR; Dave UD; Rocha-Rodrigues J; Zadka M; Datta I; Asenjo-Garcia A; Lipson M
    Opt Lett; 2024 Jul; 49(14):3918-3921. PubMed ID: 39008743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of D flip-flop and T flip-flop using Mach-Zehnder interferometers for high-speed communication.
    Kumar S; Singh G; Bisht A; Amphawan A
    Appl Opt; 2015 Jul; 54(21):6397-405. PubMed ID: 26367819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimized optical coupling to silica-clad photonic crystal waveguides.
    Terada Y; Miyasaka K; Kondo K; Ishikura N; Tamura T; Baba T
    Opt Lett; 2017 Nov; 42(22):4695-4698. PubMed ID: 29140345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CMOS-compatible optical switching concept based on strain-induced refractive-index tuning.
    Virgilio M; Witzigmann B; Bolognini G; Guha S; Schroeder T; Capellini G
    Opt Express; 2015 Mar; 23(5):5930-40. PubMed ID: 25836819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides.
    McNab S; Moll N; Vlasov Y
    Opt Express; 2003 Nov; 11(22):2927-39. PubMed ID: 19471413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mid-infrared optical modulator based on silicon D-shaped photonic crystal fiber with VO
    Dawood NYM; Younis BM; Areed NFF; Hameed MFO; Obayya SSA
    Appl Opt; 2021 Oct; 60(30):9488-9496. PubMed ID: 34807090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly compact circulators in square-lattice photonic crystal waveguides.
    Jin X; Ouyang Z; Wang Q; Lin M; Wen G; Wang J
    PLoS One; 2014; 9(11):e113508. PubMed ID: 25415417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.