These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 32788964)

  • 1. Rapid within- and transgenerational changes in thermal tolerance and fitness in variable thermal landscapes.
    Cavieres G; Rezende EL; Clavijo-Baquet S; Alruiz JM; Rivera-Rebella C; Boher F; Bozinovic F
    Ecol Evol; 2020 Aug; 10(15):8105-8113. PubMed ID: 32788964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transgenerational and within-generation plasticity shape thermal performance curves.
    Cavieres G; Alruiz JM; Medina NR; Bogdanovich JM; Bozinovic F
    Ecol Evol; 2019 Feb; 9(4):2072-2082. PubMed ID: 30847093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ontogenetic thermal tolerance and performance of ectotherms at variable temperatures.
    Cavieres G; Bogdanovich JM; Bozinovic F
    J Evol Biol; 2016 Jul; 29(7):1462-8. PubMed ID: 27118598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Within-Generation and Transgenerational Plasticity of a Temperate Salmonid in Response to Thermal Acclimation and Acute Temperature Stress.
    Penney CM; Tabh JKR; Wilson CC; Burness G
    Physiol Biochem Zool; 2022; 95(6):484-499. PubMed ID: 36154926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal plasticity due to parental and early-life environments in the jacky dragon (Amphibolurus muricatus).
    So CKJ; Schwanz LE
    J Exp Zool A Ecol Integr Physiol; 2018 Jul; 329(6-7):308-316. PubMed ID: 29938929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Limited transgenerational effects of environmental temperatures on thermal performance of a cold-adapted salmonid.
    Penney CM; Burness G; Tabh JKR; Wilson CC
    Conserv Physiol; 2021; 9(1):coab021. PubMed ID: 33959288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transgenerational plasticity following a dual pathogen and stress challenge in fruit flies.
    Nystrand M; Cassidy EJ; Dowling DK
    BMC Evol Biol; 2016 Aug; 16(1):171. PubMed ID: 27567640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The genetic basis and adult reproductive consequences of developmental thermal plasticity.
    Rodrigues LR; Zwoinska MK; Wiberg RAW; Snook RR
    J Anim Ecol; 2022 Jun; 91(6):1119-1134. PubMed ID: 35060127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reproductive fitness of
    Klepsatel P; Girish TN; Dircksen H; Gáliková M
    J Exp Biol; 2019 May; 222(Pt 10):. PubMed ID: 31064855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of developmental plasticity on heat tolerance may be mediated by changes in cell size in Drosophila melanogaster.
    Verspagen N; Leiva FP; Janssen IM; Verberk WCEP
    Insect Sci; 2020 Dec; 27(6):1244-1256. PubMed ID: 31829515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parental and developmental temperature effects on the thermal dependence of fitness in Drosophila melanogaster.
    Gilchrist GW; Huey RB
    Evolution; 2001 Jan; 55(1):209-14. PubMed ID: 11263742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transgenerational plasticity of reproduction depends on rate of warming across generations.
    Donelson JM; Wong M; Booth DJ; Munday PL
    Evol Appl; 2016 Oct; 9(9):1072-1081. PubMed ID: 27695516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developmental thermal plasticity among Drosophila melanogaster populations.
    Fallis LC; Fanara JJ; Morgan TJ
    J Evol Biol; 2014 Mar; 27(3):557-64. PubMed ID: 26230171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal tolerance and survival responses to scenarios of experimental climatic change: changing thermal variability reduces the heat and cold tolerance in a fly.
    Bozinovic F; Medina NR; Alruiz JM; Cavieres G; Sabat P
    J Comp Physiol B; 2016 Jul; 186(5):581-7. PubMed ID: 27003422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental plasticity of thermal performance curve for reproduction in Drosophila melanogaster.
    Klepsatel P; Knoblochová D; Dharanikota M; Vidlička Ľ; Gáliková M
    Evolution; 2023 Dec; 77(12):2606-2618. PubMed ID: 37767738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antagonistic Responses of Exposure to Sublethal Temperatures: Adaptive Phenotypic Plasticity Coincides with a Reduction in Organismal Performance.
    Gilbert AL; Miles DB
    Am Nat; 2019 Sep; 194(3):344-355. PubMed ID: 31553209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluctuating heat stress during development exposes reproductive costs and putative benefits.
    Rodrigues LR; McDermott HA; Villanueva I; Djukarić J; Ruf LC; Amcoff M; Snook RR
    J Anim Ecol; 2022 Feb; 91(2):391-403. PubMed ID: 34775602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plastic and evolutionary responses to heat stress in a temperate dung fly: negative correlation between basal and induced heat tolerance?
    Esperk T; Kjaersgaard A; Walters RJ; Berger D; Blanckenhorn WU
    J Evol Biol; 2016 May; 29(5):900-15. PubMed ID: 26801318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Context dependence of transgenerational plasticity: the influence of parental temperature depends on offspring environment and sex.
    Schwanz LE; Crawford-Ash J; Gale T
    Oecologia; 2020 Nov; 194(3):391-401. PubMed ID: 33070236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HERITABLE VARIATION FOR FECUNDITY IN FIELD-COLLECTED DROSOPHILA MELANOGASTER AND THEIR OFFSPRING REARED UNDER DIFFERENT ENVIRONMENTAL TEMPERATURES.
    Sgrò CM; Hoffmann AA
    Evolution; 1998 Feb; 52(1):134-143. PubMed ID: 28568166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.