These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 32788970)

  • 21. Pioneering Remotely Piloted Aerial Systems (Drone) Delivery of a Remotely Telementored Ultrasound Capability for Self Diagnosis and Assessment of Vulnerable Populations-the Sky Is the Limit.
    Kirkpatrick AW; McKee JL; Moeini S; Conly JM; Ma IWY; Baylis B; Hawkins W
    J Digit Imaging; 2021 Aug; 34(4):841-845. PubMed ID: 34173090
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Camera Trap Methods and Drone Thermal Surveillance Provide Reliable, Comparable Density Estimates of Large, Free-Ranging Ungulates.
    Baldwin RW; Beaver JT; Messinger M; Muday J; Windsor M; Larsen GD; Silman MR; Anderson TM
    Animals (Basel); 2023 Jun; 13(11):. PubMed ID: 37889800
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cost benefit analysis of survey methods for assessing intertidal sediment disturbance: A bait collection case study.
    White SM; Schaefer M; Barfield P; Cantrell R; Watson GJ
    J Environ Manage; 2022 Mar; 306():114386. PubMed ID: 35030426
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Accounting for detection probability with overestimation by integrating double monitoring programs over 40 years.
    Vallecillo D; Guillemain M; Authier M; Bouchard C; Cohez D; Vialet E; Massez G; Vandewalle P; Champagnon J
    PLoS One; 2022; 17(3):e0265730. PubMed ID: 35333894
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A more reliable species richness estimator based on the Gamma-Poisson model.
    Chiu CH
    PeerJ; 2023; 11():e14540. PubMed ID: 36632143
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pairing field methods to improve inference in wildlife surveys while accommodating detection covariance.
    Clare J; McKinney ST; DePue JE; Loftin CS
    Ecol Appl; 2017 Oct; 27(7):2031-2047. PubMed ID: 28644579
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An efficient extension of N-mixture models for multi-species abundance estimation.
    Gomez JP; Robinson SK; Blackburn JK; Ponciano JM
    Methods Ecol Evol; 2018 Feb; 9(2):340-353. PubMed ID: 29892335
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of distance on detectability of Arctic waterfowl using double-observer sampling during helicopter surveys.
    Alisauskas RT; Conn PB
    Ecol Evol; 2019 Jan; 9(2):859-867. PubMed ID: 30766675
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A new mark-recapture approach for abundance estimation of social species.
    Hickey JR; Sollmann R
    PLoS One; 2018; 13(12):e0208726. PubMed ID: 30571710
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Estimation of fish abundance indices based on scientific research trawl surveys.
    Chen J; Thompson ME; Wu C
    Biometrics; 2004 Mar; 60(1):116-23. PubMed ID: 15032781
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sharing detection heterogeneity information among species in community models of occupancy and abundance can strengthen inference.
    Riecke TV; Gibson D; Kéry M; Schaub M
    Ecol Evol; 2021 Dec; 11(24):18125-18135. PubMed ID: 35003662
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fusion of visible and thermal images improves automated detection and classification of animals for drone surveys.
    Krishnan BS; Jones LR; Elmore JA; Samiappan S; Evans KO; Pfeiffer MB; Blackwell BF; Iglay RB
    Sci Rep; 2023 Jun; 13(1):10385. PubMed ID: 37369669
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Do you get what you see? Insights of using mAP to select architectures of pretrained neural networks for automated aerial animal detection.
    Moreni M; Theau J; Foucher S
    PLoS One; 2023; 18(4):e0284449. PubMed ID: 37093866
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Estimating Lion Abundance using N-mixture Models for Social Species.
    Belant JL; Bled F; Wilton CM; Fyumagwa R; Mwampeta SB; Beyer DE
    Sci Rep; 2016 Oct; 6():35920. PubMed ID: 27786283
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Estimating abundance while accounting for rarity, correlated behavior, and other sources of variation in counts.
    Dorazio RM; Martin J; Edwards HH
    Ecology; 2013 Jul; 94(7):1472-8. PubMed ID: 23951707
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of Aerial Thermal Infrared Imagery and Helicopter Surveys of Bison (
    Hennig JD; Schoenecker KA; Terwilliger MLN; Holm GW; Laake JL
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372324
    [TBL] [Abstract][Full Text] [Related]  

  • 37. YOLO-based segmented dataset for drone vs. bird detection for deep and machine learning algorithms.
    Shandilya SK; Srivastav A; Yemets K; Datta A; Nagar AK
    Data Brief; 2023 Oct; 50():109355. PubMed ID: 37609648
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Counting animals in aerial images with a density map estimation model.
    Qian Y; Humphries GRW; Trathan PN; Lowther A; Donovan CR
    Ecol Evol; 2023 Apr; 13(4):e9903. PubMed ID: 37038528
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Part 2. Development of Enhanced Statistical Methods for Assessing Health Effects Associated with an Unknown Number of Major Sources of Multiple Air Pollutants.
    Park ES; Symanski E; Han D; Spiegelman C
    Res Rep Health Eff Inst; 2015 Jun; (183 Pt 1-2):51-113. PubMed ID: 26333239
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Monitoring abundance of aggregated animals (Florida manatees) using an unmanned aerial system (UAS).
    Edwards HH; Hostetler JA; Stith BM; Martin J
    Sci Rep; 2021 Jun; 11(1):12920. PubMed ID: 34155318
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.