These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 32789104)

  • 1. Hydrogenative Depolymerization of End-of-Life Polycarbonates by an Iron Pincer Complex.
    Alberti C; Fedorenko E; Enthaler S
    ChemistryOpen; 2020 Aug; 9(8):818-821. PubMed ID: 32789104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogenative Depolymerization of End-of-Life Poly-(Bisphenol A Carbonate) Catalyzed by a Ruthenium-MACHO-Complex.
    Kindler TO; Alberti C; Sundermeier J; Enthaler S
    ChemistryOpen; 2019 Dec; 8(12):1410-1412. PubMed ID: 31867148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recycling of End-of-Life Poly(bisphenol A carbonate) via Alkali Metal Halide-Catalyzed Phenolysis.
    Alberti C; Scheliga F; Enthaler S
    ChemistryOpen; 2019 Jul; 8(7):822-827. PubMed ID: 31304075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogenative Depolymerization of Polyurethanes Catalyzed by a Manganese Pincer Complex.
    Zubar V; Haedler AT; Schütte M; Hashmi ASK; Schaub T
    ChemSusChem; 2022 Jan; 15(1):e202101606. PubMed ID: 34342135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlled hydrogenative depolymerization of polyesters and polycarbonates catalyzed by ruthenium(II) PNN pincer complexes.
    Krall EM; Klein TW; Andersen RJ; Nett AJ; Glasgow RW; Reader DS; Dauphinais BC; Mc Ilrath SP; Fischer AA; Carney MJ; Hudson DJ; Robertson NJ
    Chem Commun (Camb); 2014 May; 50(38):4884-7. PubMed ID: 24647792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ruthenium-Catalyzed Hydrogenative Degradation of End-of-Life Poly(lactide) to Produce 1,2-Propanediol as Platform Chemical.
    Kindler TO; Alberti C; Fedorenko E; Santangelo N; Enthaler S
    ChemistryOpen; 2020 Apr; 9(4):401-404. PubMed ID: 32257748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient and Selective Chemical Recycling of CO
    Yu Y; Gao B; Liu Y; Lu XB
    Angew Chem Int Ed Engl; 2022 Aug; 61(34):e202204492. PubMed ID: 35770495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Simple, Selective, and General Catalyst for Ring Closing Depolymerization of Polyesters and Polycarbonates for Chemical Recycling.
    Gallin CF; Lee WW; Byers JA
    Angew Chem Int Ed Engl; 2023 Jun; 62(25):e202303762. PubMed ID: 37093979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast Simultaneous and Selective Depolymerization of Heterogeneous Streams of Polyethylene Terephthalate and Polycarbonate: Towards Industrially Feasible Chemical Recycling.
    Rubio Arias JJ; Barnard E; Thielemans W
    ChemSusChem; 2022 Aug; 15(15):e202200625. PubMed ID: 35699250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Depolymerization within a Circular Plastics System.
    Clark RA; Shaver MP
    Chem Rev; 2024 Mar; 124(5):2617-2650. PubMed ID: 38386877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation Product-Promoted Depolymerization Strategy for Chemical Recycling of Poly(bisphenol A carbonate).
    Chai M; Xu G; Yang R; Sun H; Wang Q
    Molecules; 2024 Jan; 29(3):. PubMed ID: 38338384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical Recycling of Poly(bisphenol A carbonate) by Glycolysis under 1,8-Diazabicyclo[5.4.0]undec-7-ene Catalysis.
    Quaranta E; Minischetti CC; Tartaro G
    ACS Omega; 2018 Jul; 3(7):7261-7268. PubMed ID: 30087911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical Recycling of Poly(Cyclohexene Carbonate) Using a Di-Mg
    Singer FN; Deacy AC; McGuire TM; Williams CK; Buchard A
    Angew Chem Int Ed Engl; 2022 Jun; 61(26):e202201785. PubMed ID: 35442558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogenative Depolymerization of Nylons.
    Kumar A; von Wolff N; Rauch M; Zou YQ; Shmul G; Ben-David Y; Leitus G; Avram L; Milstein D
    J Am Chem Soc; 2020 Aug; 142(33):14267-14275. PubMed ID: 32706584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Concerning Synthesis of New Biobased Polycarbonates with Curcumin in Replacement of Bisphenol A and Recycled Diphenyl Carbonate as Example of Circular Economy.
    De Leo V; Casiello M; Deluca G; Cotugno P; Catucci L; Nacci A; Fusco C; D'Accolti L
    Polymers (Basel); 2021 Jan; 13(3):. PubMed ID: 33498668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating Heterodinuclear Mg(II)M(II) (M = Mn, Fe, Ni, Cu, and Zn) Catalysts for the Chemical Recycling of Poly(cyclohexene carbonate).
    Smith ML; McGuire TM; Buchard A; Williams CK
    ACS Catal; 2023 Dec; 13(24):15770-15778. PubMed ID: 38125977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-temperature depolymerization of polysiloxanes with iron catalysis.
    Enthaler S; Kretschmer R
    ChemSusChem; 2014 Jul; 7(7):2030-6. PubMed ID: 24825826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Completely Recyclable Monomers and Polycarbonate: Approach to Sustainable Polymers.
    Liu Y; Zhou H; Guo JZ; Ren WM; Lu XB
    Angew Chem Int Ed Engl; 2017 Apr; 56(17):4862-4866. PubMed ID: 28371275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Depolymerization of Technical-Grade Polyamide 66 and Polyurethane Materials through Hydrogenation.
    Zhou W; Neumann P; Al Batal M; Rominger F; Hashmi ASK; Schaub T
    ChemSusChem; 2021 Oct; 14(19):4176-4180. PubMed ID: 33174664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Versatile Chemical Recycling Strategies: Value-Added Chemicals from Polyester and Polycarbonate Waste.
    Payne JM; Kamran M; Davidson MG; Jones MD
    ChemSusChem; 2022 Apr; 15(8):e202200255. PubMed ID: 35114081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.