These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 32789341)
1. Atomic level termination for passivation and functionalisation of silicon surfaces. Grant NE; Pointon AI; Jefferies R; Hiller D; Han Y; Beanland R; Walker M; Murphy JD Nanoscale; 2020 Aug; 12(33):17332-17341. PubMed ID: 32789341 [TBL] [Abstract][Full Text] [Related]
2. Three-dimensional etching profiles and surface speciations (via attenuated total reflection-fourier transform infrared spectroscopy) of silicon nanowires in NH4F-buffered HF solutions: a double passivation model. Teo BK; Chen WW; Sun XH; Wang SD; Lee ST J Phys Chem B; 2005 Nov; 109(46):21716-24. PubMed ID: 16853821 [TBL] [Abstract][Full Text] [Related]
3. Stable chemical enhancement of passivating nanolayer structures grown by atomic layer deposition on silicon. Pain SL; Khorani E; Niewelt T; Wratten A; Walker M; Grant NE; Murphy JD Nanoscale; 2023 Jun; 15(25):10593-10605. PubMed ID: 37284742 [TBL] [Abstract][Full Text] [Related]
4. Efficiency Enhancement of Nanotextured Black Silicon Solar Cells Using Al2O3/TiO2 Dual-Layer Passivation Stack Prepared by Atomic Layer Deposition. Wang WC; Tsai MC; Yang J; Hsu C; Chen MJ ACS Appl Mater Interfaces; 2015 May; 7(19):10228-37. PubMed ID: 25919200 [TBL] [Abstract][Full Text] [Related]
5. What a difference a bond makes: the structural, chemical, and physical properties of methyl-terminated Si(111) surfaces. Wong KT; Lewis NS Acc Chem Res; 2014 Oct; 47(10):3037-44. PubMed ID: 25192516 [TBL] [Abstract][Full Text] [Related]
6. Mechanism of atomic-scale passivation and flattening of semiconductor surfaces by wet-chemical preparations. Arima K; Endo K; Yamauchi K; Hirose K; Ono T; Sano Y J Phys Condens Matter; 2011 Oct; 23(39):394202. PubMed ID: 21921316 [TBL] [Abstract][Full Text] [Related]
7. Surface passivation of efficient nanotextured black silicon solar cells using thermal atomic layer deposition. Wang WC; Lin CW; Chen HJ; Chang CW; Huang JJ; Yang MJ; Tjahjono B; Huang JJ; Hsu WC; Chen MJ ACS Appl Mater Interfaces; 2013 Oct; 5(19):9752-9. PubMed ID: 24028609 [TBL] [Abstract][Full Text] [Related]
8. Nitrogen interaction with hydrogen-terminated silicon surfaces at the atomic scale. Dai M; Wang Y; Kwon J; Halls MD; Chabal YJ Nat Mater; 2009 Oct; 8(10):825-30. PubMed ID: 19684585 [TBL] [Abstract][Full Text] [Related]
9. Wet-chemical passivation of InAs: toward surfaces with high stability and low toxicity. Jewett SA; Ivanisevic A Acc Chem Res; 2012 Sep; 45(9):1451-9. PubMed ID: 22716947 [TBL] [Abstract][Full Text] [Related]
10. Effective Surface Passivation of InP Nanowires by Atomic-Layer-Deposited Al Black LE; Cavalli A; Verheijen MA; Haverkort JEM; Bakkers EPAM; Kessels WMM Nano Lett; 2017 Oct; 17(10):6287-6294. PubMed ID: 28885032 [TBL] [Abstract][Full Text] [Related]
11. Surface Passivation of III-V GaAs Nanopillars by Low-Frequency Plasma Deposition of Silicon Nitride for Active Nanophotonic Devices. Jacob B; Camarneiro F; Borme J; Bondarchuk O; Nieder JB; Romeira B ACS Appl Electron Mater; 2022 Jul; 4(7):3399-3410. PubMed ID: 36570334 [TBL] [Abstract][Full Text] [Related]
12. Etching behavior of silicon nanowires with HF and NH4F and surface characterization by attenuated total reflection Fourier transform infrared spectroscopy: similarities and differences between one-dimensional and two-dimensional silicon surfaces. Chen WW; Sun XH; Wang SD; Lee ST; Teo BK J Phys Chem B; 2005 Jun; 109(21):10871-9. PubMed ID: 16852323 [TBL] [Abstract][Full Text] [Related]
13. Exclusively Gas-Phase Passivation of Native Oxide-Free Silicon(100) and Silicon(111) Surfaces. Tao Y; Hauert R; Degen CL ACS Appl Mater Interfaces; 2016 May; 8(20):13157-65. PubMed ID: 27153212 [TBL] [Abstract][Full Text] [Related]
14. Enhanced photovoltaic performance of inverted pyramid-based nanostructured black-silicon solar cells passivated by an atomic-layer-deposited Al2O3 layer. Chen HY; Lu HL; Ren QH; Zhang Y; Yang XF; Ding SJ; Zhang DW Nanoscale; 2015 Oct; 7(37):15142-8. PubMed ID: 26243694 [TBL] [Abstract][Full Text] [Related]
15. Nanostructure of Porous Si and Anodic SiO Sundarapura P; Zhang XM; Yogai R; Murakami K; Fave A; Ihara M Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33670159 [TBL] [Abstract][Full Text] [Related]
16. Spectroscopic-ellipsometric study of native oxide removal by liquid phase HF process. Kurhekar AS; Apte PR Int Nano Lett; 2013 Feb; 3(10):. PubMed ID: 24619506 [No Abstract] [Full Text] [Related]
17. Superacid Passivation of Crystalline Silicon Surfaces. Bullock J; Kiriya D; Grant N; Azcatl A; Hettick M; Kho T; Phang P; Sio HC; Yan D; Macdonald D; Quevedo-Lopez MA; Wallace RM; Cuevas A; Javey A ACS Appl Mater Interfaces; 2016 Sep; 8(36):24205-11. PubMed ID: 27553365 [TBL] [Abstract][Full Text] [Related]
18. Chemical surface passivation of Ge nanowires. Hanrath T; Korgel BA J Am Chem Soc; 2004 Dec; 126(47):15466-72. PubMed ID: 15563174 [TBL] [Abstract][Full Text] [Related]
19. Vapor-Phase Passivation of Chlorine-Terminated Ge(100) Using Self-Assembled Monolayers of Hexanethiol. Garvey S; Holmes JD; Kim YS; Long B ACS Appl Mater Interfaces; 2020 Jul; 12(26):29899-29907. PubMed ID: 32501666 [TBL] [Abstract][Full Text] [Related]
20. Smoothing and passivation of special Si(111) substrates: studied by SPV, PL, AFM and SEM measurements. Angermann H; Rappich J; Sieber I; Hübener K; Hauschild J Anal Bioanal Chem; 2008 Mar; 390(6):1463-70. PubMed ID: 18066540 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]