BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 32789380)

  • 1. The same but different: multiple functions of the fungal flavin dependent monooxygenase SorD from Penicillium chrysogenum.
    Kahlert L; Cox RJ; Skellam E
    Chem Commun (Camb); 2020 Sep; 56(74):10934-10937. PubMed ID: 32789380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diels-Alder Reactions During the Biosynthesis of Sorbicillinoids.
    Kahlert L; Bassiony EF; Cox RJ; Skellam EJ
    Angew Chem Int Ed Engl; 2020 Mar; 59(14):5816-5822. PubMed ID: 31943627
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Derntl C; Guzmán-Chávez F; Mello-de-Sousa TM; Busse HJ; Driessen AJM; Mach RL; Mach-Aigner AR
    Front Microbiol; 2017; 8():2037. PubMed ID: 29104566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The biosynthesis of bisvertinolone: evidence for oxosorbicillinol as a direct precursor.
    Abe N; Arakawa T; Hirota A
    Chem Commun (Camb); 2002 Feb; (3):204-5. PubMed ID: 12120368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism and regulation of sorbicillin biosynthesis by Penicillium chrysogenum.
    Guzmán-Chávez F; Salo O; Nygård Y; Lankhorst PP; Bovenberg RAL; Driessen AJM
    Microb Biotechnol; 2017 Jul; 10(4):958-968. PubMed ID: 28618182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemo-enzymatic Total Synthesis of Oxosorbicillinol, Sorrentanone, Rezishanones B and C, Sorbicatechol A, Bisvertinolone, and (+)-Epoxysorbicillinol.
    Sib A; Gulder TAM
    Angew Chem Int Ed Engl; 2018 Oct; 57(44):14650-14653. PubMed ID: 29790637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of a Polyketide Synthase Involved in Sorbicillin Biosynthesis by Penicillium chrysogenum.
    Salo O; Guzmán-Chávez F; Ries MI; Lankhorst PP; Bovenberg RAL; Vreeken RJ; Driessen AJM
    Appl Environ Microbiol; 2016 Jul; 82(13):3971-3978. PubMed ID: 27107123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Why did the Fleming strain fail in penicillin industry?
    Rodríguez-Sáiz M; Díez B; Barredo JL
    Fungal Genet Biol; 2005 May; 42(5):464-70. PubMed ID: 15809010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Several steps of lateral gene transfer followed by events of 'birth-and-death' evolution shaped a fungal sorbicillinoid biosynthetic gene cluster.
    Druzhinina IS; Kubicek EM; Kubicek CP
    BMC Evol Biol; 2016 Dec; 16(1):269. PubMed ID: 28010735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Key role of LaeA and velvet complex proteins on expression of β-lactam and PR-toxin genes in Penicillium chrysogenum: cross-talk regulation of secondary metabolite pathways.
    Martín JF
    J Ind Microbiol Biotechnol; 2017 May; 44(4-5):525-535. PubMed ID: 27565675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Cloning and characterization of a novel glutathione transferase gene from Penicillium chrysogenum].
    Zhang Y; Wang FQ; Zheng GZ; Dai M; Liu J; Zhao Y; Ren ZH; Zhao BH; Jia Q
    Sheng Wu Gong Cheng Xue Bao; 2007 Jul; 23(4):618-22. PubMed ID: 17822032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel GH43 α-l-arabinofuranosidase of Penicillium chrysogenum that preferentially degrades single-substituted arabinosyl side chains in arabinan.
    Shinozaki A; Kawakami T; Hosokawa S; Sakamoto T
    Enzyme Microb Technol; 2014 May; 58-59():80-6. PubMed ID: 24731829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sorbicillin analogues and related dimeric compounds from Penicillium notatum.
    Maskey RP; Grün-Wollny I; Laatsch H
    J Nat Prod; 2005 Jun; 68(6):865-70. PubMed ID: 15974609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cloning and functional identification of C-4 methyl sterol oxidase genes from the penicillin-producing fungus Penicillium chrysogenum.
    Wang FQ; Zhao Y; Dai M; Liu J; Zheng GZ; Ren ZH; He JG
    FEMS Microbiol Lett; 2008 Oct; 287(1):91-9. PubMed ID: 18707625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning, characterization, and engineering of fungal L-arabinitol dehydrogenases.
    Kim B; Sullivan RP; Zhao H
    Appl Microbiol Biotechnol; 2010 Jul; 87(4):1407-14. PubMed ID: 20414651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The FMN-dependent two-component monooxygenase systems.
    Ellis HR
    Arch Biochem Biophys; 2010 May; 497(1-2):1-12. PubMed ID: 20193654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subcellular localization of the homocitrate synthase in Penicillium chrysogenum.
    Bañuelos O; Casqueiro J; Steidl S; Gutiérrez S; Brakhage A; Martín JF
    Mol Genet Genomics; 2002 Jan; 266(5):711-9. PubMed ID: 11810244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and characterization of three Penicillium chrysogenum α-l-arabinofuranosidases (PcABF43B, PcABF51C, and AFQ1) with different specificities toward arabino-oligosaccharides.
    Shinozaki A; Hosokawa S; Nakazawa M; Ueda M; Sakamoto T
    Enzyme Microb Technol; 2015 Jun; 73-74():65-71. PubMed ID: 26002506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel homologous dominant selection marker for genetic transformation of Penicillium chrysogenum: overexpression of squalene epoxidase-encoding ergA.
    Sigl C; Handler M; Sprenger G; Kürnsteiner H; Zadra I
    J Biotechnol; 2010 Nov; 150(3):307-11. PubMed ID: 20851153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of a novel Penicillium chrysogenum rhamnogalacturonan rhamnohydrolase and the first report of a rhamnogalacturonan rhamnohydrolase gene.
    Matsumoto S; Yamada H; Kunishige Y; Takenaka S; Nakazawa M; Ueda M; Sakamoto T
    Enzyme Microb Technol; 2017 Mar; 98():76-85. PubMed ID: 28110667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.