These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
291 related articles for article (PubMed ID: 32789495)
1. Extensive peritumoral edema and brain-to-tumor interface MRI features enable prediction of brain invasion in meningioma: development and validation. Joo L; Park JE; Park SY; Nam SJ; Kim YH; Kim JH; Kim HS Neuro Oncol; 2021 Feb; 23(2):324-333. PubMed ID: 32789495 [TBL] [Abstract][Full Text] [Related]
2. Multi-parametric MRI-based machine learning model for prediction of WHO grading in patients with meningiomas. Zhao Z; Nie C; Zhao L; Xiao D; Zheng J; Zhang H; Yan P; Jiang X; Zhao H Eur Radiol; 2024 Apr; 34(4):2468-2479. PubMed ID: 37812296 [TBL] [Abstract][Full Text] [Related]
3. Multiparameter MRI-based radiomics nomogram for preoperative prediction of brain invasion in atypical meningioma:a multicentre study. Yu J; Kong X; Xie D; Zheng F; Wang C; Shi D; He C; Liang X; Xu H; Li S; Chen X BMC Med Imaging; 2024 Jun; 24(1):134. PubMed ID: 38840054 [TBL] [Abstract][Full Text] [Related]
4. Radiomic Features of the Edema Region May Contribute to Grading Meningiomas With Peritumoral Edema. Guo Z; Tian Z; Shi F; Xu P; Zhang J; Ling C; Zeng Q J Magn Reson Imaging; 2023 Jul; 58(1):301-310. PubMed ID: 36259547 [TBL] [Abstract][Full Text] [Related]
5. A radiomics model for preoperative prediction of brain invasion in meningioma non-invasively based on MRI: A multicentre study. Zhang J; Yao K; Liu P; Liu Z; Han T; Zhao Z; Cao Y; Zhang G; Zhang J; Tian J; Zhou J EBioMedicine; 2020 Aug; 58():102933. PubMed ID: 32739863 [TBL] [Abstract][Full Text] [Related]
6. MRI-based machine learning models predict the malignant biological behavior of meningioma. Li M; Liu L; Qi J; Qiao Y; Zeng H; Jiang W; Zhu R; Chen F; Huang H; Wu S BMC Med Imaging; 2023 Sep; 23(1):141. PubMed ID: 37759192 [TBL] [Abstract][Full Text] [Related]
7. Comparison of machine learning classifiers for differentiation of grade 1 from higher gradings in meningioma: A multicenter radiomics study. Hamerla G; Meyer HJ; Schob S; Ginat DT; Altman A; Lim T; Gihr GA; Horvath-Rizea D; Hoffmann KT; Surov A Magn Reson Imaging; 2019 Nov; 63():244-249. PubMed ID: 31425811 [TBL] [Abstract][Full Text] [Related]
8. MRI- and DWI-Based Radiomics Features for Preoperatively Predicting Meningioma Sinus Invasion. Gui Y; Chen F; Ren J; Wang L; Chen K; Zhang J J Imaging Inform Med; 2024 Jun; 37(3):1054-1066. PubMed ID: 38351221 [TBL] [Abstract][Full Text] [Related]
9. Diagnosis of Invasive Meningioma Based on Brain-Tumor Interface Radiomics Features on Brain MR Images: A Multicenter Study. Xiao D; Zhao Z; Liu J; Wang X; Fu P; Le Grange JM; Wang J; Guo X; Zhao H; Shi J; Yan P; Jiang X Front Oncol; 2021; 11():708040. PubMed ID: 34504789 [TBL] [Abstract][Full Text] [Related]
10. Nomogram based on MRI can preoperatively predict brain invasion in meningioma. Zhang J; Cao Y; Zhang G; Zhao Z; Sun J; Li W; Ren J; Han T; Zhou J; Chen K Neurosurg Rev; 2022 Dec; 45(6):3729-3737. PubMed ID: 36180806 [TBL] [Abstract][Full Text] [Related]
11. Predicting peritumoral edema development after gamma knife radiosurgery of meningiomas using machine learning methods: a multicenter study. Li X; Lu Y; Liu L; Wang D; Zhao Y; Mei N; Geng D; Ma X; Zheng W; Duan S; Wu PY; Wen H; Tan Y; Sun X; Sun S; Li Z; Yu T; Yin B Eur Radiol; 2023 Dec; 33(12):8912-8924. PubMed ID: 37498381 [TBL] [Abstract][Full Text] [Related]
12. Quantification of Radiomics features of Peritumoral Vasogenic Edema extracted from fluid-attenuated inversion recovery images in glioblastoma and isolated brain metastasis, using T1-dynamic contrast-enhanced Perfusion analysis. Parvaze PS; Bhattacharjee R; Verma YK; Singh RK; Yadav V; Singh A; Khanna G; Ahlawat S; Trivedi R; Patir R; Vaishya S; Shah TJ; Gupta RK NMR Biomed; 2023 May; 36(5):e4884. PubMed ID: 36453877 [TBL] [Abstract][Full Text] [Related]
13. Gd-EOB-DTPA-enhanced MRI radiomics to predict vessels encapsulating tumor clusters (VETC) and patient prognosis in hepatocellular carcinoma. Yu Y; Fan Y; Wang X; Zhu M; Hu M; Shi C; Hu C Eur Radiol; 2022 Feb; 32(2):959-970. PubMed ID: 34480625 [TBL] [Abstract][Full Text] [Related]
14. Meningiomas: Preoperative predictive histopathological grading based on radiomics of MRI. Han Y; Wang T; Wu P; Zhang H; Chen H; Yang C Magn Reson Imaging; 2021 Apr; 77():36-43. PubMed ID: 33220449 [TBL] [Abstract][Full Text] [Related]
15. Presurgical detection of brain invasion status in meningiomas based on first-order histogram based texture analysis of contrast enhanced imaging. Kandemirli SG; Chopra S; Priya S; Ward C; Locke T; Soni N; Srivastava S; Jones K; Bathla G Clin Neurol Neurosurg; 2020 Nov; 198():106205. PubMed ID: 32932028 [TBL] [Abstract][Full Text] [Related]
16. Three-Dimensional Radiomics Features From Multi-Parameter MRI Combined With Clinical Characteristics Predict Postoperative Cerebral Edema Exacerbation in Patients With Meningioma. Xiao B; Fan Y; Zhang Z; Tan Z; Yang H; Tu W; Wu L; Shen X; Guo H; Wu Z; Zhu X Front Oncol; 2021; 11():625220. PubMed ID: 33937027 [TBL] [Abstract][Full Text] [Related]
17. A deep learning radiomics model for preoperative grading in meningioma. Zhu Y; Man C; Gong L; Dong D; Yu X; Wang S; Fang M; Wang S; Fang X; Chen X; Tian J Eur J Radiol; 2019 Jul; 116():128-134. PubMed ID: 31153553 [TBL] [Abstract][Full Text] [Related]
18. A deep learning radiomics analysis for identifying sinus invasion in patients with meningioma before operation using tumor and peritumoral regions. Sun K; Zhang J; Liu Z; Qiu Q; Gao H; Liu P; Chen K; Wei W; Wang L; Zhang J; Zhou J; Tian J Eur J Radiol; 2022 Apr; 149():110187. PubMed ID: 35183900 [TBL] [Abstract][Full Text] [Related]
19. A Clinical Semantic and Radiomics Nomogram for Predicting Brain Invasion in WHO Grade II Meningioma Based on Tumor and Tumor-to-Brain Interface Features. Li N; Mo Y; Huang C; Han K; He M; Wang X; Wen J; Yang S; Wu H; Dong F; Sun F; Li Y; Yu Y; Zhang M; Guan X; Xu X Front Oncol; 2021; 11():752158. PubMed ID: 34745982 [TBL] [Abstract][Full Text] [Related]
20. Development of a Clinicopathological-Radiomics Model for Predicting Progression and Recurrence in Meningioma Patients. He M; Wang X; Huang C; Peng X; Li N; Li F; Dong H; Wang Z; Zhao L; Wu F; Zhang M; Guan X; Xu X Acad Radiol; 2024 May; 31(5):2061-2073. PubMed ID: 37993304 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]