These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 32789746)
1. The influence of phosphorus source and the nature of nitrogen substrate on the biomass production and lipid accumulation in oleaginous Mucoromycota fungi. Dzurendova S; Zimmermann B; Tafintseva V; Kohler A; Ekeberg D; Shapaval V Appl Microbiol Biotechnol; 2020 Sep; 104(18):8065-8076. PubMed ID: 32789746 [TBL] [Abstract][Full Text] [Related]
2. Microcultivation and FTIR spectroscopy-based screening revealed a nutrient-induced co-production of high-value metabolites in oleaginous Mucoromycota fungi. Dzurendova S; Zimmermann B; Kohler A; Tafintseva V; Slany O; Certik M; Shapaval V PLoS One; 2020; 15(6):e0234870. PubMed ID: 32569317 [TBL] [Abstract][Full Text] [Related]
3. High-throughput screening of Mucoromycota fungi for production of low- and high-value lipids. Kosa G; Zimmermann B; Kohler A; Ekeberg D; Afseth NK; Mounier J; Shapaval V Biotechnol Biofuels; 2018; 11():66. PubMed ID: 29563969 [TBL] [Abstract][Full Text] [Related]
4. Evaluating the Potential of Oleaginous Yeasts as Feedstock for Biodiesel Production. Mukhtar H; Suliman SM; Shabbir A; Mumtaz MW; Rashid U; Rahimuddin SA Protein Pept Lett; 2018; 25(2):195-201. PubMed ID: 29359654 [TBL] [Abstract][Full Text] [Related]
5. Evaluation and optimisation of direct transesterification methods for the assessment of lipid accumulation in oleaginous filamentous fungi. Langseter AM; Dzurendova S; Shapaval V; Kohler A; Ekeberg D; Zimmermann B Microb Cell Fact; 2021 Mar; 20(1):59. PubMed ID: 33658027 [TBL] [Abstract][Full Text] [Related]
7. Repression of reserve lipid turnover in Cunninghamella echinulata and Mortierella isabellina cultivated in multiple-limited media. Papanikolaou S; Sarantou S; Komaitis M; Aggelis G J Appl Microbiol; 2004; 97(4):867-75. PubMed ID: 15357737 [TBL] [Abstract][Full Text] [Related]
8. Microbial lipid production from xylose by Mortierella isabellina. Gao D; Zeng J; Zheng Y; Yu X; Chen S Bioresour Technol; 2013 Apr; 133():315-21. PubMed ID: 23434808 [TBL] [Abstract][Full Text] [Related]
9. Oleaginous fungi: a promising source of biofuels and nutraceuticals with enhanced lipid production strategies. Hassane AMA; Eldiehy KSH; Saha D; Mohamed H; Mosa MA; Abouelela ME; Abo-Dahab NF; El-Shanawany AA Arch Microbiol; 2024 Jul; 206(7):338. PubMed ID: 38955856 [TBL] [Abstract][Full Text] [Related]
10. Direct transesterification of fatty acids produced by Fusarium solani for biodiesel production: effect of carbon and nitrogen on lipid accumulation in the fungal biomass. Rasmey AM; Tawfik MA; Abdel-Kareem MM J Appl Microbiol; 2020 Apr; 128(4):1074-1085. PubMed ID: 31802586 [TBL] [Abstract][Full Text] [Related]
11. Production of Palmitoleic and Linoleic Acid in Oleaginous and Nonoleaginous Yeast Biomass. Kolouchová I; Maťátková O; Sigler K; Masák J; Řezanka T Int J Anal Chem; 2016; 2016():7583684. PubMed ID: 27022398 [TBL] [Abstract][Full Text] [Related]
12. Optimization Growth of Spirulina (Arthrospira) Platensis in Photobioreactor Under Varied Nitrogen Concentration for Maximized Biomass, Carotenoids and Lipid Contents. El Baky HHA; El Baroty GS; Mostafa EM Recent Pat Food Nutr Agric; 2020; 11(1):40-48. PubMed ID: 30588890 [TBL] [Abstract][Full Text] [Related]
13. Oleaginous yeasts from Antarctica: Screening and preliminary approach on lipid accumulation. Viñarta SC; Angelicola MV; Barros JM; Fernández PM; Mac Cormak W; Aybar MJ; de Figueroa LI J Basic Microbiol; 2016 Dec; 56(12):1360-1368. PubMed ID: 27283113 [TBL] [Abstract][Full Text] [Related]
14. Enhancement of lipid accumulation by oleaginous yeast through phosphorus limitation under high content of ammonia. Huang X; Luo H; Mu T; Shen Y; Yuan M; Liu J Bioresour Technol; 2018 Aug; 262():9-14. PubMed ID: 29689440 [TBL] [Abstract][Full Text] [Related]
15. Multi-Factorial-Guided Media Optimization for Enhanced Biomass and Lipid Formation by the Oleaginous Yeast Awad D; Bohnen F; Mehlmer N; Brueck T Front Bioeng Biotechnol; 2019; 7():54. PubMed ID: 30984750 [TBL] [Abstract][Full Text] [Related]
16. Process optimization involving critical evaluation of oxygen transfer, oxygen uptake and nitrogen limitation for enhanced biomass and lipid production by oleaginous yeast for biofuel application. Chopra J; Sen R Bioprocess Biosyst Eng; 2018 Aug; 41(8):1103-1113. PubMed ID: 29679131 [TBL] [Abstract][Full Text] [Related]
17. Effect of carbon and nitrogen sources on the chemical composition of lipids of Rhizopus delemar. Tahoun MK; Awny H; Mashaley R Z Ernahrungswiss; 1986 Dec; 25(4):228-32. PubMed ID: 3825190 [TBL] [Abstract][Full Text] [Related]
18. Comparative lipid production by oleaginous yeasts in hydrolyzates of lignocellulosic biomass and process strategy for high titers. Slininger PJ; Dien BS; Kurtzman CP; Moser BR; Bakota EL; Thompson SR; O'Bryan PJ; Cotta MA; Balan V; Jin M; Sousa Lda C; Dale BE Biotechnol Bioeng; 2016 Aug; 113(8):1676-90. PubMed ID: 26724417 [TBL] [Abstract][Full Text] [Related]
19. Comprehending the influence of critical cultivation parameters on the oleaginous behaviour of potent rotten fruit yeast isolates. Diwan B; Gupta P J Appl Microbiol; 2018 Aug; 125(2):490-505. PubMed ID: 29727512 [TBL] [Abstract][Full Text] [Related]
20. A New Species of Freshwater Algae Nephrochlamys yushanlensis sp. nov. (Selenastraceae, Sphaeropleales) and Its Lipid Accumulation during Nitrogen and Phosphorus Starvation. Maltsev Y; Maltseva I; Maltseva S; Kociolek JP; Kulikovskiy M J Phycol; 2021 Apr; 57(2):606-618. PubMed ID: 33296071 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]