These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 32789916)

  • 41. Triplet harvesting with 100% efficiency by way of thermally activated delayed fluorescence in charge transfer OLED emitters.
    Dias FB; Bourdakos KN; Jankus V; Moss KC; Kamtekar KT; Bhalla V; Santos J; Bryce MR; Monkman AP
    Adv Mater; 2013 Jul; 25(27):3707-14. PubMed ID: 23703877
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Organic nanostructures of thermally activated delayed fluorescent emitters with enhanced intersystem crossing as novel metal-free photosensitizers.
    Zhang J; Chen W; Chen R; Liu XK; Xiong Y; Kershaw SV; Rogach AL; Adachi C; Zhang X; Lee CS
    Chem Commun (Camb); 2016 Sep; 52(79):11744-11747. PubMed ID: 27722240
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Unraveling the Microscopic Origin of Triplet Lasing from Organic Solids.
    Paul L; Banerjee A; Paul A; Ruud K; Chakrabarti S
    J Phys Chem Lett; 2018 Aug; 9(15):4314-4318. PubMed ID: 30011206
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Molecular Design Tactics for Highly Efficient Thermally Activated Delayed Fluorescence Emitters for Organic Light Emitting Diodes.
    Konidena RK; Lee JY
    Chem Rec; 2019 Aug; 19(8):1499-1517. PubMed ID: 30375173
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Basic photophysical analysis of a thermally activated delayed fluorescence copper(i) complex in the solid state: theoretical estimations from a polarizable continuum model (PCM)-tuned range-separated density functional approach.
    Lv L; Yuan K; Wang Y
    Phys Chem Chem Phys; 2018 Feb; 20(9):6548-6561. PubMed ID: 29446422
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Spin-Vibronic Model for Quantitative Prediction of Reverse Intersystem Crossing Rate in Thermally Activated Delayed Fluorescence Systems.
    Kim I; Jeon SO; Jeong D; Choi H; Son WJ; Kim D; Rhee YM; Lee HS
    J Chem Theory Comput; 2020 Jan; 16(1):621-632. PubMed ID: 31841330
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mechanism of intersystem crossing of thermally activated delayed fluorescence molecules.
    Ogiwara T; Wakikawa Y; Ikoma T
    J Phys Chem A; 2015 Apr; 119(14):3415-8. PubMed ID: 25774790
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Achievement of High-Level Reverse Intersystem Crossing in Rubrene-Doped Organic Light-Emitting Diodes.
    Tang X; Pan R; Zhao X; Zhu H; Xiong Z
    J Phys Chem Lett; 2020 Apr; 11(8):2804-2811. PubMed ID: 32191490
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Rigid Multiple Resonance Thermally Activated Delayed Fluorescence Core Toward Stable Electroluminescence and Lasing.
    Tang X; Xie M; Lin Z; Mitrofanov K; Tsagaantsooj T; Lee YT; Kabe R; Sandanayaka ASD; Matsushima T; Hatakeyama T; Adachi C
    Angew Chem Int Ed Engl; 2024 Jan; 63(2):e202315210. PubMed ID: 37991245
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dithia[3.3]paracyclophane Core: A Versatile Platform for Triplet State Fine-Tuning and Through-Space TADF Emission.
    Auffray M; Kim DH; Kim JU; Bencheikh F; Kreher D; Zhang Q; D'Aléo A; Ribierre JC; Mathevet F; Adachi C
    Chem Asian J; 2019 Jun; 14(11):1921-1925. PubMed ID: 30912261
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Delayed fluorescence in a solution-processable pure red molecular organic emitter based on dithienylbenzothiadiazole: a joint optical, electroluminescence, and magnetoelectroluminescence study.
    Chen P; Wang LP; Tan WY; Peng QM; Zhang ST; Zhu XH; Li F
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2972-8. PubMed ID: 25585040
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Excited State Dynamics of Thermally Activated Delayed Fluorescence from an Excited State Intramolecular Proton Transfer System.
    Long Y; Mamada M; Li C; Dos Santos PL; Colella M; Danos A; Adachi C; Monkman A
    J Phys Chem Lett; 2020 May; 11(9):3305-3312. PubMed ID: 32255640
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Diabatic Decomposition Perspective on the Role of Charge Transfer and Local Excitations in Thermally Activated Delayed Fluorescence.
    de Sousa LE; de Silva P
    J Chem Theory Comput; 2022 Sep; 18(9):5459-5470. PubMed ID: 36007256
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Vibronic Coupling Effect on the Vibrationally Resolved Electronic Spectra and Intersystem Crossing Rates of a TADF Emitter: 7-PhQAD.
    Lin S; Pei Z; Zhang B; Ma H; Liang W
    J Phys Chem A; 2022 Jan; 126(2):239-248. PubMed ID: 34989581
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Isotope Effect in the Magneto-Optoelectronic Response of Organic Light-Emitting Diodes Based on Donor-Acceptor Exciplexes.
    Liu X; Popli H; Kwon O; Malissa H; Pan X; Park B; Choi B; Kim S; Ehrenfreund E; Boehme C; Vardeny ZV
    Adv Mater; 2020 Dec; 32(48):e2004421. PubMed ID: 33119173
    [TBL] [Abstract][Full Text] [Related]  

  • 56. TADF Dye-Loaded Nanoparticles for Fluorescence Live-Cell Imaging.
    Crucho CIC; Avó J; Diniz AM; Pinto SN; Barbosa J; Smith PO; Berberan-Santos MN; Pålsson LO; Dias FB
    Front Chem; 2020; 8():404. PubMed ID: 32457878
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Solvent effect on the photophysical properties of thermally activated delayed fluorescence molecules.
    Zhang X; Shi Y; Cai L; Zhou Y; Wang CK; Lin L
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jan; 225():117473. PubMed ID: 31470345
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Thermally Activated Delayed Fluorescence Host for High Performance Organic Light-Emitting Diodes.
    Zhang L; Cheah KW
    Sci Rep; 2018 Jun; 8(1):8832. PubMed ID: 29891928
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Achieving Submicrosecond Thermally Activated Delayed Fluorescence Lifetime and Highly Efficient Electroluminescence by Fine-Tuning of the Phenoxazine-Pyrimidine Structure.
    Serevičius T; Skaisgiris R; Dodonova J; Jagintavičius L; Banevičius D; Kazlauskas K; Tumkevičius S; Juršėnas S
    ACS Appl Mater Interfaces; 2020 Mar; 12(9):10727-10736. PubMed ID: 32020805
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Thermally Assisted Fluorescent Polymers: Polycyclic Aromatic Materials for High Color Purity and White-Light Emission.
    Polgar AM; Tonge CM; Christopherson CJ; Paisley NR; Reyes AC; Hudson ZM
    ACS Appl Mater Interfaces; 2020 Aug; 12(34):38602-38613. PubMed ID: 32846499
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.