These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 3279024)
1. Structure and mechanism of bacterial periplasmic transport systems. Ames GF J Bioenerg Biomembr; 1988 Feb; 20(1):1-18. PubMed ID: 3279024 [TBL] [Abstract][Full Text] [Related]
2. Bacterial periplasmic permeases belong to a family of transport proteins operating from Escherichia coli to human: Traffic ATPases. Ames GF; Mimura CS; Shyamala V FEMS Microbiol Rev; 1990 Aug; 6(4):429-46. PubMed ID: 2147378 [TBL] [Abstract][Full Text] [Related]
3. Liganded and unliganded receptors interact with equal affinity with the membrane complex of periplasmic permeases, a subfamily of traffic ATPases. Ames GF; Liu CE; Joshi AK; Nikaido K J Biol Chem; 1996 Jun; 271(24):14264-70. PubMed ID: 8662800 [TBL] [Abstract][Full Text] [Related]
4. The ATP-binding component of a prokaryotic traffic ATPase is exposed to the periplasmic (external) surface. Baichwal V; Liu D; Ames GF Proc Natl Acad Sci U S A; 1993 Jan; 90(2):620-4. PubMed ID: 7678461 [TBL] [Abstract][Full Text] [Related]
5. TRAP transporters: a new family of periplasmic solute transport systems encoded by the dctPQM genes of Rhodobacter capsulatus and by homologs in diverse gram-negative bacteria. Forward JA; Behrendt MC; Wyborn NR; Cross R; Kelly DJ J Bacteriol; 1997 Sep; 179(17):5482-93. PubMed ID: 9287004 [TBL] [Abstract][Full Text] [Related]
6. Structural model of the nucleotide-binding conserved component of periplasmic permeases. Mimura CS; Holbrook SR; Ames GF Proc Natl Acad Sci U S A; 1991 Jan; 88(1):84-8. PubMed ID: 1986384 [TBL] [Abstract][Full Text] [Related]
7. Mathematical treatment of the kinetics of binding protein dependent transport systems reveals that both the substrate loaded and unloaded binding proteins interact with the membrane components. Bohl E; Shuman HA; Boos W J Theor Biol; 1995 Jan; 172(1):83-94. PubMed ID: 7891451 [TBL] [Abstract][Full Text] [Related]
8. Periplasmic binding protein-dependent transport systems: the membrane-associated components. Higgins CF; Gallagher MP; Hyde SC; Mimmack ML; Pearce SR Philos Trans R Soc Lond B Biol Sci; 1990 Jan; 326(1236):353-64; discussion 364-5. PubMed ID: 1970642 [TBL] [Abstract][Full Text] [Related]
9. [Component and functional mechanism of the ferrous iron acquisition system in gram-negative bacteria - A review]. Feng Y; Liu M; Cheng A Wei Sheng Wu Xue Bao; 2016 Jul; 56(7):1061-9. PubMed ID: 29732873 [TBL] [Abstract][Full Text] [Related]
10. The AcrB efflux pump: conformational cycling and peristalsis lead to multidrug resistance. Seeger MA; Diederichs K; Eicher T; Brandstätter L; Schiefner A; Verrey F; Pos KM Curr Drug Targets; 2008 Sep; 9(9):729-49. PubMed ID: 18781920 [TBL] [Abstract][Full Text] [Related]
11. ATP-binding sites in the membrane components of histidine permease, a periplasmic transport system. Hobson AC; Weatherwax R; Ames GF Proc Natl Acad Sci U S A; 1984 Dec; 81(23):7333-7. PubMed ID: 6239289 [TBL] [Abstract][Full Text] [Related]
12. Salmonella typhimurium histidine periplasmic permease mutations that allow transport in the absence of histidine-binding proteins. Speiser DM; Ames GF J Bacteriol; 1991 Feb; 173(4):1444-51. PubMed ID: 1995591 [TBL] [Abstract][Full Text] [Related]
13. The Venus flytrap of periplasmic binding proteins: an ancient protein module present in multiple drug receptors. Felder CB; Graul RC; Lee AY; Merkle HP; Sadee W AAPS PharmSci; 1999; 1(2):E2. PubMed ID: 11741199 [TBL] [Abstract][Full Text] [Related]
14. A family of extracytoplasmic proteins that allow transport of large molecules across the outer membranes of gram-negative bacteria. Dinh T; Paulsen IT; Saier MH J Bacteriol; 1994 Jul; 176(13):3825-31. PubMed ID: 8021163 [TBL] [Abstract][Full Text] [Related]
15. ATP-dependent ferric hydroxamate transport system in Escherichia coli: periplasmic FhuD interacts with a periplasmic and with a transmembrane/cytoplasmic region of the integral membrane protein FhuB, as revealed by competitive peptide mapping. Mademidis A; Killmann H; Kraas W; Flechsler I; Jung G; Braun V Mol Microbiol; 1997 Dec; 26(5):1109-23. PubMed ID: 9426146 [TBL] [Abstract][Full Text] [Related]
16. Structure and mechanism of bacterial tripartite efflux pumps. Neuberger A; Du D; Luisi BF Res Microbiol; 2018; 169(7-8):401-413. PubMed ID: 29787834 [TBL] [Abstract][Full Text] [Related]
17. Structural insight into lipopolysaccharide transport from the Gram-negative bacterial inner membrane to the outer membrane. Dong H; Tang X; Zhang Z; Dong C Biochim Biophys Acta Mol Cell Biol Lipids; 2017 Nov; 1862(11):1461-1467. PubMed ID: 28821406 [TBL] [Abstract][Full Text] [Related]
18. Reconstitution of a bacterial periplasmic permease in proteoliposomes and demonstration of ATP hydrolysis concomitant with transport. Bishop L; Agbayani R; Ambudkar SV; Maloney PC; Ames GF Proc Natl Acad Sci U S A; 1989 Sep; 86(18):6953-7. PubMed ID: 2674940 [TBL] [Abstract][Full Text] [Related]
19. Thermodynamics and dynamics of histidine-binding protein, the water-soluble receptor of histidine permease. Implications for the transport of high and low affinity ligands. Kreimer DI; Malak H; Lakowicz JR; Trakhanov S; Villar E; Shnyrov VL Eur J Biochem; 2000 Jul; 267(13):4242-52. PubMed ID: 10866829 [TBL] [Abstract][Full Text] [Related]
20. Conformational changes and ligand recognition of Escherichia coli D-xylose binding protein revealed. Sooriyaarachchi S; Ubhayasekera W; Park C; Mowbray SL J Mol Biol; 2010 Oct; 402(4):657-68. PubMed ID: 20678502 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]