These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
302 related articles for article (PubMed ID: 32790339)
1. Bortezomib-Encapsulated CuS/Carbon Dot Nanocomposites for Enhanced Photothermal Therapy via Stabilization of Polyubiquitinated Substrates in the Proteasomal Degradation Pathway. Yu Y; Song M; Chen C; Du Y; Li C; Han Y; Yan F; Shi Z; Feng S ACS Nano; 2020 Aug; 14(8):10688-10703. PubMed ID: 32790339 [TBL] [Abstract][Full Text] [Related]
2. Ataxia telangiectasia mutated inhibitor-loaded copper sulfide nanoparticles for low-temperature photothermal therapy of hepatocellular carcinoma. Cai H; Dai X; Guo X; Zhang L; Cao K; Yan F; Ji B; Liu Y Acta Biomater; 2021 Jun; 127():276-286. PubMed ID: 33812073 [TBL] [Abstract][Full Text] [Related]
3. Multifunctional PEG-GO/CuS nanocomposites for near-infrared chemo-photothermal therapy. Bai J; Liu Y; Jiang X Biomaterials; 2014 Jul; 35(22):5805-13. PubMed ID: 24767788 [TBL] [Abstract][Full Text] [Related]
4. Albumin-Bioinspired Gd:CuS Nanotheranostic Agent for In Vivo Photoacoustic/Magnetic Resonance Imaging-Guided Tumor-Targeted Photothermal Therapy. Yang W; Guo W; Le W; Lv G; Zhang F; Shi L; Wang X; Wang J; Wang S; Chang J; Zhang B ACS Nano; 2016 Nov; 10(11):10245-10257. PubMed ID: 27791364 [TBL] [Abstract][Full Text] [Related]
5. Tumor-targeting CuS nanoparticles for multimodal imaging and guided photothermal therapy of lymph node metastasis. Shi H; Yan R; Wu L; Sun Y; Liu S; Zhou Z; He J; Ye D Acta Biomater; 2018 May; 72():256-265. PubMed ID: 29588255 [TBL] [Abstract][Full Text] [Related]
6. Fe3O4@mSiO2-FA-CuS-PEG nanocomposites for magnetic resonance imaging and targeted chemo-photothermal synergistic therapy of cancer cells. Gao Z; Liu X; Deng G; Zhou F; Zhang L; Wang Q; Lu J Dalton Trans; 2016 Sep; 45(34):13456-65. PubMed ID: 27493065 [TBL] [Abstract][Full Text] [Related]
7. Flexible CuS-embedded human serum albumin hollow nanocapsules with peroxidase-like activity for synergistic sonodynamic and photothermal cancer therapy. Wang H; Tao J; Xu C; Tian Y; Lu G; Yang B; Teng Z Nanoscale; 2022 Jul; 14(27):9702-9714. PubMed ID: 35766330 [TBL] [Abstract][Full Text] [Related]
8. Multifunctional nanoparticles precisely reprogram the tumor microenvironment and potentiate antitumor immunotherapy after near-infrared-II light-mediated photothermal therapy. Ge Y; Zhang J; Jin K; Ye Z; Wang W; Zhou Z; Ye J Acta Biomater; 2023 Sep; 167():551-563. PubMed ID: 37302731 [TBL] [Abstract][Full Text] [Related]
9. Biocompatible CuS-based nanoplatforms for efficient photothermal therapy and chemotherapy in vivo. Peng S; He Y; Er M; Sheng Y; Gu Y; Chen H Biomater Sci; 2017 Feb; 5(3):475-484. PubMed ID: 28078340 [TBL] [Abstract][Full Text] [Related]
10. Local field enhanced Au/CuS nanocomposites as efficient photothermal transducer agents for cancer treatment. Lakshmanan SB; Zou X; Hossu M; Ma L; Yang C; Chen W J Biomed Nanotechnol; 2012 Dec; 8(6):883-90. PubMed ID: 23029996 [TBL] [Abstract][Full Text] [Related]
11. Gd-/CuS-Loaded Functional Nanogels for MR/PA Imaging-Guided Tumor-Targeted Photothermal Therapy. Zhang C; Sun W; Wang Y; Xu F; Qu J; Xia J; Shen M; Shi X ACS Appl Mater Interfaces; 2020 Feb; 12(8):9107-9117. PubMed ID: 32003962 [TBL] [Abstract][Full Text] [Related]
12. Cetuximab-modified CuS nanoparticles integrating near-infrared-II-responsive photothermal therapy and anti-vessel treatment. Li B; Jiang Z; Xie D; Wang Y; Lao X Int J Nanomedicine; 2018; 13():7289-7302. PubMed ID: 30510418 [TBL] [Abstract][Full Text] [Related]
13. A light-controllable specific drug delivery nanoplatform for targeted bimodal imaging-guided photothermal/chemo synergistic cancer therapy. Guo Y; Wang XY; Chen YL; Liu FQ; Tan MX; Ao M; Yu JH; Ran HT; Wang ZX Acta Biomater; 2018 Oct; 80():308-326. PubMed ID: 30240955 [TBL] [Abstract][Full Text] [Related]
14. Ce6-Modified Carbon Dots for Multimodal-Imaging-Guided and Single-NIR-Laser-Triggered Photothermal/Photodynamic Synergistic Cancer Therapy by Reduced Irradiation Power. Sun S; Chen J; Jiang K; Tang Z; Wang Y; Li Z; Liu C; Wu A; Lin H ACS Appl Mater Interfaces; 2019 Feb; 11(6):5791-5803. PubMed ID: 30648846 [TBL] [Abstract][Full Text] [Related]
15. Tumor targeting and penetrating biomimetic mesoporous polydopamine nanoparticles facilitate photothermal killing and autophagy blocking for synergistic tumor ablation. Huang X; Chen L; Lin Y; Tou KI; Cai H; Jin H; Lin W; Zhang J; Cai J; Zhou H; Pi J Acta Biomater; 2021 Dec; 136():456-472. PubMed ID: 34562660 [TBL] [Abstract][Full Text] [Related]
16. Targeted polydopamine nanoparticles enable photoacoustic imaging guided chemo-photothermal synergistic therapy of tumor. Li Y; Jiang C; Zhang D; Wang Y; Ren X; Ai K; Chen X; Lu L Acta Biomater; 2017 Jan; 47():124-134. PubMed ID: 27721008 [TBL] [Abstract][Full Text] [Related]
17. Hybrid membrane camouflaged copper sulfide nanoparticles for photothermal-chemotherapy of hepatocellular carcinoma. Ji B; Cai H; Yang Y; Peng F; Song M; Sun K; Yan F; Liu Y Acta Biomater; 2020 Jul; 111():363-372. PubMed ID: 32434082 [TBL] [Abstract][Full Text] [Related]
18. Double-Targeting Explosible Nanofirework for Tumor Ignition to Guide Tumor-Depth Photothermal Therapy. Zhang MK; Wang XG; Zhu JY; Liu MD; Li CX; Feng J; Zhang XZ Small; 2018 May; 14(20):e1800292. PubMed ID: 29665292 [TBL] [Abstract][Full Text] [Related]
19. Designed formation of Prussian Blue/CuS Janus nanostructure with enhanced NIR-I and NIR-II dual window response for tumor thermotherapy. Li D; Wang T; Li L; Zhang L; Wang C; Dong X J Colloid Interface Sci; 2022 May; 613():671-680. PubMed ID: 35065441 [TBL] [Abstract][Full Text] [Related]
20. Inhibition of Pro-Survival Autophagy Induced by Rare-Earth Nanocomposites for Promoting Photothermal Therapy of Visualized Tumors. Peng S; Wang L; Liu L; Song L; Shi J; Zheng H; Xu J; Rong R; Zhang Y Adv Healthc Mater; 2023 Jan; 12(2):e2202117. PubMed ID: 36222264 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]