These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 32790350)

  • 1. Electron-Transparent Thermoelectric Coolers Demonstrated with Nanoparticle and Condensation Thermometry.
    Hubbard WA; Mecklenburg M; Lodico JJ; Chen Y; Ling XY; Patil R; Kessel WA; Flatt GJK; Chan HL; Vareskic B; Bal G; Zutter B; Regan BC
    ACS Nano; 2020 Sep; 14(9):11510-11517. PubMed ID: 32790350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermoelectric bismuth telluride nanostructures fabricated by electrodeposition within flexible templates.
    Cervino-Solana P; Ramirez-Peral MJ; Martín-González MS; Caballero-Calero O
    Heliyon; 2024 Aug; 10(16):e36114. PubMed ID: 39224383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication and characterization of thermoelectric thick film prepared from p-type bismuth telluride nanopowders.
    Kim KT; Ha GH
    J Nanosci Nanotechnol; 2012 Feb; 12(2):1577-80. PubMed ID: 22630004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermoelectric power factor of ternary single-crystalline Sb2Te3- and Bi2Te3-based nanowires.
    Bäßler S; Böhnert T; Gooth J; Schumacher C; Pippel E; Nielsch K
    Nanotechnology; 2013 Dec; 24(49):495402. PubMed ID: 24231731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High thermoelectric cooling performance of n-type Mg
    Mao J; Zhu H; Ding Z; Liu Z; Gamage GA; Chen G; Ren Z
    Science; 2019 Aug; 365(6452):495-498. PubMed ID: 31320557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Boundary Engineering for the Thermoelectric Performance of Bulk Alloys Based on Bismuth Telluride.
    Mun H; Choi SM; Lee KH; Kim SW
    ChemSusChem; 2015 Jul; 8(14):2312-26. PubMed ID: 25782971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultra-high performance wearable thermoelectric coolers with less materials.
    Kishore RA; Nozariasbmarz A; Poudel B; Sanghadasa M; Priya S
    Nat Commun; 2019 Apr; 10(1):1765. PubMed ID: 30992438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement in thermoelectric properties due to Ag nanoparticles incorporated in Bi
    Gupta S; Agarwal DC; Sivaiah B; Amrithpandian S; Asokan K; Dhar A; Panigrahi BK; Avasthi DK; Gupta V
    Beilstein J Nanotechnol; 2019; 10():634-643. PubMed ID: 30931205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys.
    Poudel B; Hao Q; Ma Y; Lan Y; Minnich A; Yu B; Yan X; Wang D; Muto A; Vashaee D; Chen X; Liu J; Dresselhaus MS; Chen G; Ren Z
    Science; 2008 May; 320(5876):634-8. PubMed ID: 18356488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication and Excellent Performances of Bismuth Telluride-Based Thermoelectric Devices.
    Zhu W; Wei P; Zhang J; Li L; Zhu W; Nie X; Sang X; Zhang Q; Zhao W
    ACS Appl Mater Interfaces; 2022 Mar; 14(10):12276-12283. PubMed ID: 35234460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. General strategy for developing thick-film micro-thermoelectric coolers from material fabrication to device integration.
    Sun X; Yan Y; Kang M; Zhao W; Yan K; Wang H; Li R; Zhao S; Hua X; Wang B; Zhang W; Deng Y
    Nat Commun; 2024 May; 15(1):3870. PubMed ID: 38719875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermoelectric Cooling-Oriented Large Power Factor Realized in N-Type Bi
    Zhang F; He M; Zhu L; Jia B; Shi Y; Wang W; Peng Z; Liang P; Chao X; Yang Z; Wu D
    Small; 2024 Dec; 20(49):e2405182. PubMed ID: 39300867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermoelectric properties of Co
    Ghosh S; Bisht A; Karati A; Rogl G; Rogl P; Murty BS; Suwas S; Mallik RC
    J Phys Condens Matter; 2018 Mar; 30(9):095701. PubMed ID: 29432210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile production of thermoelectric bismuth telluride thick films in the presence of polyvinyl alcohol.
    Lei C; Burton MR; Nandhakumar IS
    Phys Chem Chem Phys; 2016 Jun; 18(21):14164-7. PubMed ID: 27166737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dismantling and chemical characterization of spent Peltier thermoelectric devices for antimony, bismuth and tellurium recovery.
    Balva M; Legeai S; Garoux L; Leclerc N; Meux E
    Environ Technol; 2017 Apr; 38(7):791-797. PubMed ID: 27454773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of Bismuth Telluride Films with High Thermoelectric Power Factor.
    Na J; Kim Y; Park T; Park C; Kim E
    ACS Appl Mater Interfaces; 2016 Nov; 8(47):32392-32400. PubMed ID: 27801559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards Antimonene and 2D Antimony Telluride through Electrochemical Exfoliation.
    Marzo AML; Gusmão R; Sofer Z; Pumera M
    Chemistry; 2020 May; 26(29):6583-6590. PubMed ID: 32017255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermoelectric property enhancement via pore confinement in template grown bismuth telluride nanowire arrays.
    Reeves RD; Crosser LA; Chester GE; Hill JJ
    Nanotechnology; 2017 Dec; 28(50):505401. PubMed ID: 29087358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conductive scanning probe microscopy of nanostructured Bi2Te3.
    Souier T; Li G; Santos S; Stefancich M; Chiesa M
    Nanoscale; 2012 Jan; 4(2):600-6. PubMed ID: 22143255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomic layer-by-layer thermoelectric conversion in topological insulator bismuth/antimony tellurides.
    Sung JH; Heo H; Hwang I; Lim M; Lee D; Kang K; Choi HC; Park JH; Jhi SH; Jo MH
    Nano Lett; 2014 Jul; 14(7):4030-5. PubMed ID: 24937706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.