These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 32790350)

  • 21. Structure study of bulk nanograined thermoelectric bismuth antimony telluride.
    Lan Y; Poudel B; Ma Y; Wang D; Dresselhaus MS; Chen G; Ren Z
    Nano Lett; 2009 Apr; 9(4):1419-22. PubMed ID: 19243189
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single-Nanoparticle Thermometry with a Nanopipette.
    Holub M; Adobes-Vidal M; Frutiger A; Gschwend PM; Pratsinis SE; Momotenko D
    ACS Nano; 2020 Jun; 14(6):7358-7369. PubMed ID: 32426962
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-Performance μ-Thermoelectric Device Based on Bi
    Vieira EMF; Pires AL; Silva JPB; Magalhães VH; Grilo J; Brito FP; Silva MF; Pereira AM; Goncalves LM
    ACS Appl Mater Interfaces; 2019 Oct; 11(42):38946-38954. PubMed ID: 31560510
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tailoring Thermoelectric Properties through Structure and Morphology in Chemically Synthesized n-Type Bismuth Telluride Nanostructures.
    Akshay VR; Suneesh MV; Vasundhara M
    Inorg Chem; 2017 Jun; 56(11):6264-6274. PubMed ID: 28489353
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bismuth Telluride and Its Alloys as Materials for Thermoelectric Generation.
    Goldsmid HJ
    Materials (Basel); 2014 Mar; 7(4):2577-2592. PubMed ID: 28788584
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced Contact Performance and Thermal Tolerance of Ni/Bi
    Zhang J; Wei P; Zhang H; Li L; Zhu W; Nie X; Zhao W; Zhang Q
    ACS Appl Mater Interfaces; 2023 May; 15(18):22705-22713. PubMed ID: 37126364
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Thermoelectric Properties of
    Witting IT; Ricci F; Chasapis TC; Hautier G; Snyder GJ
    Research (Wash D C); 2020; 2020():4361703. PubMed ID: 32285043
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Flexible thermoelectric generators with inkjet-printed bismuth telluride nanowires and liquid metal contacts.
    Chen B; Kruse M; Xu B; Tutika R; Zheng W; Bartlett MD; Wu Y; Claussen JC
    Nanoscale; 2019 Mar; 11(12):5222-5230. PubMed ID: 30644953
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phase transformation and thermoelectric properties of bismuth-telluride nanowires.
    Hsin CL; Wingert M; Huang CW; Guo H; Shih TJ; Suh J; Wang K; Wu J; Wu WW; Chen R
    Nanoscale; 2013 Jun; 5(11):4669-72. PubMed ID: 23619552
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interfacial Stability in Bi
    Wang CH; Hsieh HC; Sun ZW; Ranganayakulu VK; Lan TW; Chen YY; Chang YY; Wu AT
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):27001-27009. PubMed ID: 32459950
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-performance flexible thermoelectric modules based on high crystal quality printed TiS
    Jacob S; Delatouche B; Péré D; Ullah Khan Z; Ledoux MJ; Crispin X; Chmielowski R
    Sci Technol Adv Mater; 2021; 22(1):907-916. PubMed ID: 34867084
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Maximizing the performance of n-type Mg
    Liu Z; Gao W; Oshima H; Nagase K; Lee CH; Mori T
    Nat Commun; 2022 Mar; 13(1):1120. PubMed ID: 35236865
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhancing Thermoelectric Performances of Bismuth Antimony Telluride via Synergistic Combination of Multiscale Structuring and Band Alignment by FeTe
    Shin WH; Roh JW; Ryu B; Chang HJ; Kim HS; Lee S; Seo WS; Ahn K
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):3689-3698. PubMed ID: 29303242
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transient Thermometry and High-Resolution Transmission Electron Microscopy Analysis of Filamentary Resistive Switches.
    Kwon J; Sharma AA; Chen CY; Fantini A; Jurczak M; Herzing AA; Bain JA; Picard YN; Skowronski M
    ACS Appl Mater Interfaces; 2016 Aug; 8(31):20176-84. PubMed ID: 27351065
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Precision Interface Engineering of an Atomic Layer in Bulk Bi
    Kim KC; Lim SS; Lee SH; Hong J; Cho DY; Mohamed AY; Koo CM; Baek SH; Kim JS; Kim SK
    ACS Nano; 2019 Jun; 13(6):7146-7154. PubMed ID: 31180627
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Achieving Out-of-Plane Thermoelectric Figure of Merit
    Park NW; Lee WY; Yoon YS; Kim GS; Yoon YG; Lee SK
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):38247-38254. PubMed ID: 31542917
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thin-film thermoelectric devices with high room-temperature figures of merit.
    Venkatasubramanian R; Siivola E; Colpitts T; O'Quinn B
    Nature; 2001 Oct; 413(6856):597-602. PubMed ID: 11595940
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On-chip cooling by superlattice-based thin-film thermoelectrics.
    Chowdhury I; Prasher R; Lofgreen K; Chrysler G; Narasimhan S; Mahajan R; Koester D; Alley R; Venkatasubramanian R
    Nat Nanotechnol; 2009 Apr; 4(4):235-8. PubMed ID: 19350033
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of surface band bending and scattering on thermoelectric transport in suspended bismuth telluride nanoplates.
    Pettes MT; Maassen J; Jo I; Lundstrom MS; Shi L
    Nano Lett; 2013 Nov; 13(11):5316-22. PubMed ID: 24164564
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An On-Site Thermoelectric Cooling Device for Cryotherapy and Control of Skin Blood Flow.
    Mejia N; Dedow K; Nguy L; Sullivan P; Khoshnevis S; Diller KR
    J Med Device; 2015 Dec; 9(4):0445021-445026. PubMed ID: 26421089
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.