These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Pseudomonas strains naturally associated with potato plants produce volatiles with high potential for inhibition of Phytophthora infestans. Hunziker L; Bönisch D; Groenhagen U; Bailly A; Schulz S; Weisskopf L Appl Environ Microbiol; 2015 Feb; 81(3):821-30. PubMed ID: 25398872 [TBL] [Abstract][Full Text] [Related]
3. Endophytic Bacillus subtilis H17-16 effectively inhibits Phytophthora infestans, the pathogen of potato late blight, and its potential application. Zhang J; Huang X; Yang S; Huang A; Ren J; Luo X; Feng S; Li P; Li Z; Dong P Pest Manag Sci; 2023 Dec; 79(12):5073-5086. PubMed ID: 37572366 [TBL] [Abstract][Full Text] [Related]
4. A sulfur-containing volatile emitted by potato-associated bacteria confers protection against late blight through direct anti-oomycete activity. Chinchilla D; Bruisson S; Meyer S; Zühlke D; Hirschfeld C; Joller C; L'Haridon F; Mène-Saffrané L; Riedel K; Weisskopf L Sci Rep; 2019 Dec; 9(1):18778. PubMed ID: 31889050 [TBL] [Abstract][Full Text] [Related]
5. Biocontrol Mechanisms of Three Plant Essential Oils Against Tian Y; Wang J; Lan Q; Liu Y; Zhang J; Liu L; Su X; Islam R Phytopathology; 2024 Jul; 114(7):1502-1514. PubMed ID: 39023506 [TBL] [Abstract][Full Text] [Related]
6. Phenazine-1-Carboxylic Acid Production by Pseudomonas fluorescens LBUM636 Alters Phytophthora infestans Growth and Late Blight Development. Morrison CK; Arseneault T; Novinscak A; Filion M Phytopathology; 2017 Mar; 107(3):273-279. PubMed ID: 27827009 [TBL] [Abstract][Full Text] [Related]
7. Insights into organ-specific pathogen defense responses in plants: RNA-seq analysis of potato tuber-Phytophthora infestans interactions. Gao L; Tu ZJ; Millett BP; Bradeen JM BMC Genomics; 2013 May; 14():340. PubMed ID: 23702331 [TBL] [Abstract][Full Text] [Related]
8. Population Structure of the Late Blight Pathogen Phytophthora infestans in a Potato Germplasm Nursery in Two Consecutive Years. Tian Y; Yin J; Sun J; Ma H; Ma Y; Quan J; Shan W Phytopathology; 2015 Jun; 105(6):771-7. PubMed ID: 25738550 [TBL] [Abstract][Full Text] [Related]
9. Antioomycete activity of gamma-oxocrotonate fatty acids against P. infestans. Eschen-Lippold L; Draeger T; Teichert A; Wessjohann L; Westermann B; Rosahl S; Arnold N J Agric Food Chem; 2009 Oct; 57(20):9607-12. PubMed ID: 19778058 [TBL] [Abstract][Full Text] [Related]
10. Translocation of phosphite encourages the protection against Phytophthora infestans in potato: The efficiency and efficacy. Huang Z; Carter N; Lu H; Zhang Z; Wang-Pruski G Pestic Biochem Physiol; 2018 Nov; 152():122-130. PubMed ID: 30497702 [TBL] [Abstract][Full Text] [Related]
11. Improved Genome Sequence and Gene Annotation Resource for the Potato Late Blight Pathogen Lee Y; Cho KS; Seo JH; Sohn KH; Prokchorchik M Mol Plant Microbe Interact; 2020 Aug; 33(8):1025-1028. PubMed ID: 32310703 [No Abstract] [Full Text] [Related]
12. The Effectiveness of Induced Defense Responses in a Susceptible Potato Genotype Depends on the Growth Rate of Phytophthora infestans. Thomas C; Mabon R; Andrivon D; Val F Mol Plant Microbe Interact; 2019 Jan; 32(1):76-85. PubMed ID: 30048603 [TBL] [Abstract][Full Text] [Related]
13. A quantitative real-time PCR method for in planta monitoring of Phytophthora infestans growth. Llorente B; Bravo-Almonacid F; Cvitanich C; Orlowska E; Torres HN; Flawiá MM; Alonso GD Lett Appl Microbiol; 2010 Dec; 51(6):603-10. PubMed ID: 21039667 [TBL] [Abstract][Full Text] [Related]
14. Copper ions suppress abscisic acid biosynthesis to enhance defence against Phytophthora infestans in potato. Liu HF; Xue XJ; Yu Y; Xu MM; Lu CC; Meng XL; Zhang BG; Ding XH; Chu ZH Mol Plant Pathol; 2020 May; 21(5):636-651. PubMed ID: 32077242 [TBL] [Abstract][Full Text] [Related]
15. [Immunomodulating activity of chitosan derivatives with salicylic acid and its fragments]. Vasiukova NI; Ozeretskovskaia OL; Chalenko GI; Gerasimova NG; L'vova AA; Il'ina AV; Levov AN; Varlamov VP; Tarchevskiĭ IA Prikl Biokhim Mikrobiol; 2010; 46(3):379-84. PubMed ID: 20586293 [TBL] [Abstract][Full Text] [Related]
16. Mycofumigation of postharvest blueberries with volatile compounds from Trichoderma atroviride IC-11 is a promising tool to control rots caused by Botrytis cinerea. Bello F; Montironi ID; Medina MB; Munitz MS; Ferreira FV; Williman C; Vázquez D; Cariddi LN; Musumeci MA Food Microbiol; 2022 Sep; 106():104040. PubMed ID: 35690443 [TBL] [Abstract][Full Text] [Related]
17. Growth media affect the volatilome and antimicrobial activity against Phytophthora infestans in four Lysobacter type strains. Lazazzara V; Perazzolli M; Pertot I; Biasioli F; Puopolo G; Cappellin L Microbiol Res; 2017 Aug; 201():52-62. PubMed ID: 28602402 [TBL] [Abstract][Full Text] [Related]
18. Biofumigation activities of volatile compounds from two Trichoderma afroharzianum strains against Fusarium infections in fresh chilies. Khruengsai S; Pripdeevech P; D'Souza PE; Panuwet P J Sci Food Agric; 2021 Nov; 101(14):5861-5871. PubMed ID: 33788973 [TBL] [Abstract][Full Text] [Related]
19. Effect of Flumorph on F-Actin Dynamics in the Potato Late Blight Pathogen Phytophthora infestans. Hua C; Kots K; Ketelaar T; Govers F; Meijer HJ Phytopathology; 2015 Apr; 105(4):419-23. PubMed ID: 25496300 [TBL] [Abstract][Full Text] [Related]
20. Trichoderma atroviride LZ42 releases volatile organic compounds promoting plant growth and suppressing Fusarium wilt disease in tomato seedlings. Rao Y; Zeng L; Jiang H; Mei L; Wang Y BMC Microbiol; 2022 Apr; 22(1):88. PubMed ID: 35382732 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]