BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 32790367)

  • 1. Capturing Biologically Complex Tissue-Specific Membranes at Different Levels of Compositional Complexity.
    Ingólfsson HI; Bhatia H; Zeppelin T; Bennett WFD; Carpenter KA; Hsu PC; Dharuman G; Bremer PT; Schiøtt B; Lightstone FC; Carpenter TS
    J Phys Chem B; 2020 Sep; 124(36):7819-7829. PubMed ID: 32790367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Native-like membrane models of E. coli polar lipid extract shed light on the importance of lipid composition complexity.
    Pluhackova K; Horner A
    BMC Biol; 2021 Jan; 19(1):4. PubMed ID: 33441107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of Increased Membrane Realism on Conformational Sampling of Proteins.
    Weigle AT; Carr M; Shukla D
    J Chem Theory Comput; 2021 Aug; 17(8):5342-5357. PubMed ID: 34339605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An overview of molecular dynamics simulations of oxidized lipid systems, with a comparison of ELBA and MARTINI force fields for coarse grained lipid simulations.
    Siani P; de Souza RM; Dias LG; Itri R; Khandelia H
    Biochim Biophys Acta; 2016 Oct; 1858(10):2498-2511. PubMed ID: 27058982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dry Martini, a coarse-grained force field for lipid membrane simulations with implicit solvent.
    Arnarez C; Uusitalo JJ; Masman MF; Ingólfsson HI; de Jong DH; Melo MN; Periole X; de Vries AH; Marrink SJ
    J Chem Theory Comput; 2015 Jan; 11(1):260-75. PubMed ID: 26574224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Curvature-based sorting of eight lipid types in asymmetric buckled plasma membrane models.
    Cino EA; Tieleman DP
    Biophys J; 2022 Jun; 121(11):2060-2068. PubMed ID: 35524412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of ternary bilayer mixtures with asymmetric or symmetric unsaturated phosphatidylcholine lipids by coarse grained molecular dynamics simulations.
    Rosetti C; Pastorino C
    J Phys Chem B; 2012 Mar; 116(11):3525-37. PubMed ID: 22369354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and Dynamics of Phospholipid Nanodiscs from All-Atom and Coarse-Grained Simulations.
    Debnath A; Schäfer LV
    J Phys Chem B; 2015 Jun; 119(23):6991-7002. PubMed ID: 25978497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved prediction of bilayer and monolayer properties using a refined BMW-MARTINI force field.
    Miguel V; Perillo MA; Villarreal MA
    Biochim Biophys Acta; 2016 Nov; 1858(11):2903-2910. PubMed ID: 27591685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Ether Linkage on Membrane Dipole Potential and Cholesterol Flip-Flop Motion in Lipid Bilayer Membranes.
    Shen H; Zhao K; Wu Z
    J Phys Chem B; 2019 Sep; 123(37):7818-7828. PubMed ID: 31453700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DPPC-cholesterol phase diagram using coarse-grained Molecular Dynamics simulations.
    Wang Y; Gkeka P; Fuchs JE; Liedl KR; Cournia Z
    Biochim Biophys Acta; 2016 Nov; 1858(11):2846-2857. PubMed ID: 27526680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Capturing the multiscale dynamics of membrane protein complexes with all-atom, mixed-resolution, and coarse-grained models.
    Liao C; Zhao X; Liu J; Schneebeli ST; Shelley JC; Li J
    Phys Chem Chem Phys; 2017 Mar; 19(13):9181-9188. PubMed ID: 28317993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Force Field Resolution on Membrane Mechanical Response and Mechanoporation Damage under Deformation Simulations.
    Vo ATN; Murphy MA; Phan PK; Prabhu RK; Stone TW
    Mol Biotechnol; 2024 Apr; 66(4):865-875. PubMed ID: 37016179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Composition Fluctuations in Lipid Bilayers.
    Baoukina S; Rozmanov D; Tieleman DP
    Biophys J; 2017 Dec; 113(12):2750-2761. PubMed ID: 29262367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer simulations of the phase separation in model membranes.
    Baoukina S; Mendez-Villuendas E; Bennett WF; Tieleman DP
    Faraday Discuss; 2013; 161():63-75; discussion 113-50. PubMed ID: 23805738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential of mean force analysis of the self-association of leucine-rich transmembrane α-helices: difference between atomistic and coarse-grained simulations.
    Nishizawa M; Nishizawa K
    J Chem Phys; 2014 Aug; 141(7):075101. PubMed ID: 25149815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computer simulations of a heterogeneous membrane with enhanced sampling techniques.
    Cherniavskyi YK; Fathizadeh A; Elber R; Tieleman DP
    J Chem Phys; 2020 Oct; 153(14):144110. PubMed ID: 33086798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CHARMM-GUI Martini Maker for modeling and simulation of complex bacterial membranes with lipopolysaccharides.
    Hsu PC; Bruininks BMH; Jefferies D; Cesar Telles de Souza P; Lee J; Patel DS; Marrink SJ; Qi Y; Khalid S; Im W
    J Comput Chem; 2017 Oct; 38(27):2354-2363. PubMed ID: 28776689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of ergosterol on the fungal membrane properties. All-atom and coarse-grained molecular dynamics study.
    Ermakova E; Zuev Y
    Chem Phys Lipids; 2017 Dec; 209():45-53. PubMed ID: 29122611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.