These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 32790381)

  • 1. MARTINI-Compatible Coarse-Grained Model for the Mesoscale Simulation of Peptoids.
    Zhao M; Sampath J; Alamdari S; Shen G; Chen CL; Mundy CJ; Pfaendtner J; Ferguson AL
    J Phys Chem B; 2020 Sep; 124(36):7745-7764. PubMed ID: 32790381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A CGenFF-based force field for simulations of peptoids with both cis and trans peptide bonds.
    Weiser LJ; Santiso EE
    J Comput Chem; 2019 Aug; 40(22):1946-1956. PubMed ID: 31062370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. α-Aminoxy Peptoids: A Unique Peptoid Backbone with a Preference for cis-Amide Bonds.
    Krieger V; Ciglia E; Thoma R; Vasylyeva V; Frieg B; de Sousa Amadeu N; Kurz T; Janiak C; Gohlke H; Hansen FK
    Chemistry; 2017 Mar; 23(15):3699-3707. PubMed ID: 28090689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning peptoid secondary structure with pentafluoroaromatic functionality: a new design paradigm for the construction of discretely folded peptoid structures.
    Gorske BC; Blackwell HE
    J Am Chem Soc; 2006 Nov; 128(44):14378-87. PubMed ID: 17076512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards a coarse-grained model of the peptoid backbone: the case of N,N-dimethylacetamide.
    Du P; Rick SW; Kumar R
    Phys Chem Chem Phys; 2018 Sep; 20(36):23386-23396. PubMed ID: 30178791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New strategies for the design of folded peptoids revealed by a survey of noncovalent interactions in model systems.
    Gorske BC; Stringer JR; Bastian BL; Fowler SA; Blackwell HE
    J Am Chem Soc; 2009 Nov; 131(45):16555-67. PubMed ID: 19860427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational and Experimental Determination of the Properties, Structure, and Stability of Peptoid Nanosheets and Nanotubes.
    Zhao M; Zhang S; Zheng R; Alamdari S; Mundy CJ; Pfaendtner J; Pozzo LD; Chen CL; De Yoreo JJ; Ferguson AL
    Biomacromolecules; 2023 Jun; 24(6):2618-2632. PubMed ID: 37141445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cooperative Intramolecular Hydrogen Bonding Strongly Enforces
    Wijaya AW; Nguyen AI; Roe LT; Butterfoss GL; Spencer RK; Li NK; Zuckermann RN
    J Am Chem Soc; 2019 Dec; 141(49):19436-19447. PubMed ID: 31765162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strategies to Control the Cis-Trans Isomerization of Peptoid Amide Bonds.
    Kalita D; Sahariah B; Pravo Mookerjee S; Kanta Sarma B
    Chem Asian J; 2022 Jun; 17(11):e202200149. PubMed ID: 35362652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extraordinarily robust polyproline type I peptoid helices generated via the incorporation of α-chiral aromatic N-1-naphthylethyl side chains.
    Stringer JR; Crapster JA; Guzei IA; Blackwell HE
    J Am Chem Soc; 2011 Oct; 133(39):15559-67. PubMed ID: 21861531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of peptoids with all trans-amide backbones and peptoid reverse turns via the tactical incorporation of N-aryl side chains capable of hydrogen bonding.
    Stringer JR; Crapster JA; Guzei IA; Blackwell HE
    J Org Chem; 2010 Sep; 75(18):6068-78. PubMed ID: 20722367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solid-phase submonomer synthesis of peptoid polymers and their self-assembly into highly-ordered nanosheets.
    Tran H; Gael SL; Connolly MD; Zuckermann RN
    J Vis Exp; 2011 Nov; (57):e3373. PubMed ID: 22083233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchical Self-Assembly Pathways of Peptoid Helices and Sheets.
    Zhao M; Lachowski KJ; Zhang S; Alamdari S; Sampath J; Mu P; Mundy CJ; Pfaendtner J; De Yoreo JJ; Chen CL; Pozzo LD; Ferguson AL
    Biomacromolecules; 2022 Mar; 23(3):992-1008. PubMed ID: 35020390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent Advances in the Synthesis of Peptoid Macrocycles.
    Webster AM; Cobb SL
    Chemistry; 2018 May; 24(30):7560-7573. PubMed ID: 29356125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sidechain-Backbone Tetrel Bonding Interactions Provide a General Mechanism for trans-Peptoid Stabilization.
    Baruah K; Kalita D; Sahariah B; Kishore Rai Deka J; Vishnoi P; Kanta Sarma B
    Chemistry; 2023 Jun; 29(32):e202300178. PubMed ID: 37016739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unconstrained peptoid tetramer exhibits a predominant conformation in aqueous solution.
    Roe LT; Pelton JG; Edison JR; Butterfoss GL; Tresca BW; LaFaye BA; Whitelam S; Wemmer DE; Zuckermann RN
    Biopolymers; 2019 Jun; 110(6):e23267. PubMed ID: 30835821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peptide science: A "rule model" for new generations of peptidomimetics.
    Reese HR; Shanahan CC; Proulx C; Menegatti S
    Acta Biomater; 2020 Jan; 102():35-74. PubMed ID: 31698048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a Systematic and Extensible Force Field for Peptoids (STEPs).
    Harris BS; Bejagam KK; Baer MD
    J Phys Chem B; 2023 Jul; 127(29):6573-6584. PubMed ID: 37462325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peptoids and peptide-peptoid hybrid biopolymers as peptidomimetics.
    Stawikowski MJ
    Methods Mol Biol; 2013; 1081():47-60. PubMed ID: 24014433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unique β-Turn Peptoid Structures and Their Application as Asymmetric Catalysts.
    Darapaneni CM; Ghosh P; Ghosh T; Maayan G
    Chemistry; 2020 Aug; 26(43):9573-9579. PubMed ID: 32216133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.