These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 32790994)
1. Coupled Effects of Fibril Width, Residual and Mechanically Liberated Lignin on the Flow, Viscoelasticity, and Dewatering of Cellulosic Nanomaterials. Imani M; Dimic-Misic K; Tavakoli M; Rojas OJ; Gane PAC Biomacromolecules; 2020 Oct; 21(10):4123-4134. PubMed ID: 32790994 [TBL] [Abstract][Full Text] [Related]
3. Effects of residual lignin and heteropolysaccharides on the bioconversion of softwood lignocellulose nanofibrils obtained by SO2-ethanol-water fractionation. Morales LO; Iakovlev M; Martin-Sampedro R; Rahikainen JL; Laine J; van Heiningen A; Rojas OJ Bioresour Technol; 2014 Jun; 161():55-62. PubMed ID: 24686371 [TBL] [Abstract][Full Text] [Related]
4. Lignin-Containing Cellulose Nanofibrils from TEMPO-Mediated Oxidation of Date Palm Waste: Preparation, Characterization, and Reinforcing Potential. Najahi A; Tarrés Q; Mutjé P; Delgado-Aguilar M; Putaux JL; Boufi S Nanomaterials (Basel); 2022 Dec; 13(1):. PubMed ID: 36616036 [TBL] [Abstract][Full Text] [Related]
5. A comparative study of the suitability of different cereal straws for lignocellulose nanofibers isolation. Espinosa E; Sánchez R; Otero R; Domínguez-Robles J; Rodríguez A Int J Biol Macromol; 2017 Oct; 103():990-999. PubMed ID: 28554790 [TBL] [Abstract][Full Text] [Related]
6. Influence of initial chemical composition and characteristics of pulps on the production and properties of lignocellulosic nanofibers. Ehman NV; Lourenço AF; McDonagh BH; Vallejos ME; Felissia FE; Ferreira PJT; Chinga-Carrasco G; Area MC Int J Biol Macromol; 2020 Jan; 143():453-461. PubMed ID: 31778692 [TBL] [Abstract][Full Text] [Related]
7. High-Lignin-Containing Cellulose Nanofibrils from Date Palm Waste Produced by Hydrothermal Treatment in the Presence of Maleic Acid. Najahi A; Tarrés Q; Delgado-Aguilar M; Putaux JL; Boufi S Biomacromolecules; 2023 Aug; 24(8):3872-3886. PubMed ID: 37523756 [TBL] [Abstract][Full Text] [Related]
8. Residual lignin in cellulose nanofibrils enhances the interfacial stabilization of Pickering emulsions. Guo S; Li X; Kuang Y; Liao J; Liu K; Li J; Mo L; He S; Zhu W; Song J; Song T; Rojas OJ Carbohydr Polym; 2021 Feb; 253():117223. PubMed ID: 33278985 [TBL] [Abstract][Full Text] [Related]
9. Lignin-containing cellulose nanofibers made with microwave-aid green solvent treatment for magnetic fluid stabilization. Liu C; Li Z; Li MC; Chen W; Xu W; Hong S; Wu Q; Mei C Carbohydr Polym; 2022 Sep; 291():119573. PubMed ID: 35698338 [TBL] [Abstract][Full Text] [Related]
10. Production of lignin-containing cellulose nanofibers using deep eutectic solvents for UV-absorbing polymer reinforcement. Liu C; Li MC; Chen W; Huang R; Hong S; Wu Q; Mei C Carbohydr Polym; 2020 Oct; 246():116548. PubMed ID: 32747235 [TBL] [Abstract][Full Text] [Related]
11. Changes in the Dimensions of Lignocellulose Nanofibrils with Different Lignin Contents by Enzymatic Hydrolysis. Jang JH; Hayashi N; Han SY; Park CW; Febrianto F; Lee SH; Kim NH Polymers (Basel); 2020 Sep; 12(10):. PubMed ID: 32992855 [TBL] [Abstract][Full Text] [Related]
12. Lignocellulosic nanofibrils produced using wheat straw and their pulping solid residue: From agricultural waste to cellulose nanomaterials. Bian H; Gao Y; Luo J; Jiao L; Wu W; Fang G; Dai H Waste Manag; 2019 May; 91():1-8. PubMed ID: 31203931 [TBL] [Abstract][Full Text] [Related]
13. Horticultural Plant Residues as New Source for Lignocellulose Nanofibers Isolation: Application on the Recycling Paperboard Process. Bascón-Villegas I; Espinosa E; Sánchez R; Tarrés Q; Pérez-Rodríguez F; Rodríguez A Molecules; 2020 Jul; 25(14):. PubMed ID: 32708406 [TBL] [Abstract][Full Text] [Related]
14. Thermally stable, enhanced water barrier, high strength starch bio-composite reinforced with lignin containing cellulose nanofibrils. Zhang CW; Nair SS; Chen H; Yan N; Farnood R; Li FY Carbohydr Polym; 2020 Feb; 230():115626. PubMed ID: 31887859 [TBL] [Abstract][Full Text] [Related]
15. Integrated production of lignin containing cellulose nanocrystals (LCNC) and nanofibrils (LCNF) using an easily recyclable di-carboxylic acid. Bian H; Chen L; Dai H; Zhu JY Carbohydr Polym; 2017 Jul; 167():167-176. PubMed ID: 28433151 [TBL] [Abstract][Full Text] [Related]
16. Effective fractionation strategy of sugarcane bagasse lignin to fabricate quality lignin-based carbon nanofibers supercapacitors. Du B; Chai L; Zhu H; Cheng J; Wang X; Chen X; Zhou J; Sun RC Int J Biol Macromol; 2021 Aug; 184():604-617. PubMed ID: 34171257 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of the effect of hot-compressed water treatment on enzymatic hydrolysis of lignocellulosic nanofibrils with different lignin content using a quartz crystal microbalance. Kumagai A; Lee SH; Endo T Biotechnol Bioeng; 2016 Jul; 113(7):1441-7. PubMed ID: 26694223 [TBL] [Abstract][Full Text] [Related]
18. Paper-Based Oil Barrier Packaging using Lignin-Containing Cellulose Nanofibrils. H Tayeb A; Tajvidi M; Bousfield D Molecules; 2020 Mar; 25(6):. PubMed ID: 32188070 [TBL] [Abstract][Full Text] [Related]
19. Isolation and characterization of lignocellulose nanofibers from different wheat straw pulps. Sánchez R; Espinosa E; Domínguez-Robles J; Loaiza JM; Rodríguez A Int J Biol Macromol; 2016 Nov; 92():1025-1033. PubMed ID: 27514440 [TBL] [Abstract][Full Text] [Related]
20. Tuning structure of spent coffee ground lignin by temperature fractionation to improve lignin-based carbon nanofibers mechanical performance. Du B; Zhu H; Wang X; Xiao LP; Ma J; Chen X; Zhou J; Sun RC Int J Biol Macromol; 2021 Mar; 174():254-262. PubMed ID: 33529632 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]