These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 32791266)

  • 1. Towards an eco-friendly deconstruction of agro-industrial biomass and preparation of renewable cellulose nanomaterials: A review.
    Teo HL; Wahab RA
    Int J Biol Macromol; 2020 Oct; 161():1414-1430. PubMed ID: 32791266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process.
    Lee HV; Hamid SB; Zain SK
    ScientificWorldJournal; 2014; 2014():631013. PubMed ID: 25247208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel processing parameters for the extraction of cellulose nanofibres (CNF) from environmentally benign pineapple leaf fibres (PALF): Structure-property relationships.
    Ravindran L; M S S; Thomas S
    Int J Biol Macromol; 2019 Jun; 131():858-870. PubMed ID: 30904530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sustainable isolation of nanocellulose from cellulose and lignocellulosic feedstocks: Recent progress and perspectives.
    Jiang J; Zhu Y; Jiang F
    Carbohydr Polym; 2021 Sep; 267():118188. PubMed ID: 34119156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acidic deep eutectic solvents pretreatment for selective lignocellulosic biomass fractionation with enhanced cellulose reactivity.
    Tian D; Guo Y; Hu J; Yang G; Zhang J; Luo L; Xiao Y; Deng S; Deng O; Zhou W; Shen F
    Int J Biol Macromol; 2020 Jan; 142():288-297. PubMed ID: 31593728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Eco-friendly laccase and cellulase enzymes pretreatment for optimized production of high content lignin-cellulose nanofibrils.
    Dias MC; Belgacem MN; de Resende JV; Martins MA; Damásio RAP; Tonoli GHD; Ferreira SR
    Int J Biol Macromol; 2022 Jun; 209(Pt A):413-425. PubMed ID: 35413312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review of nanocellulose as a new material towards environmental sustainability.
    Dhali K; Ghasemlou M; Daver F; Cass P; Adhikari B
    Sci Total Environ; 2021 Jun; 775():145871. PubMed ID: 33631573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Life cycle assessment of cellulose nanofibrils production by mechanical treatment and two different pretreatment processes.
    Arvidsson R; Nguyen D; Svanström M
    Environ Sci Technol; 2015 Jun; 49(11):6881-90. PubMed ID: 25938258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanocellulose from agro-industrial wastes: A review on sources, production, applications, and current challenges.
    Wang Y; Wang Z; Lin Y; Qin Y; He R; Wang M; Sun Q; Peng Y
    Food Res Int; 2024 Sep; 192():114741. PubMed ID: 39147548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Multifunctional Cosolvent Pair Reveals Molecular Principles of Biomass Deconstruction.
    Patri AS; Mostofian B; Pu Y; Ciaffone N; Soliman M; Smith MD; Kumar R; Cheng X; Wyman CE; Tetard L; Ragauskas AJ; Smith JC; Petridis L; Cai CM
    J Am Chem Soc; 2019 Aug; 141(32):12545-12557. PubMed ID: 31304747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomass and waste materials as potential sources of nanocrystalline cellulose: Comparative review of preparation methods (2016 - Till date).
    Mishra S; Kharkar PS; Pethe AM
    Carbohydr Polym; 2019 Mar; 207():418-427. PubMed ID: 30600024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acidic deep eutectic solvent assisted isolation of lignin containing nanocellulose from thermomechanical pulp.
    Jiang J; Carrillo-Enríquez NC; Oguzlu H; Han X; Bi R; Saddler JN; Sun RC; Jiang F
    Carbohydr Polym; 2020 Nov; 247():116727. PubMed ID: 32829849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabricating lignin-containing cellulose nanofibrils with unique properties from agricultural residues with assistance of deep eutectic solvents.
    Li X; Ning C; Li L; Liu W; Ren Q; Hou Q
    Carbohydr Polym; 2021 Nov; 274():118650. PubMed ID: 34702469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient fractionation of moso bamboo by synergistic hydrothermal-deep eutectic solvents pretreatment.
    Wang R; Wang K; Zhou M; Xu J; Jiang J
    Bioresour Technol; 2021 May; 328():124873. PubMed ID: 33639413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous extraction of lignin and cellulose nanofibrils from waste jute bags using one pot pre-treatment.
    Ahuja D; Kaushik A; Singh M
    Int J Biol Macromol; 2018 Feb; 107(Pt A):1294-1301. PubMed ID: 28964841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-production of xylo-oligosaccharides, xylose and cellulose nanofibrils from sugarcane bagasse.
    Marcondes WF; Milagres AMF; Arantes V
    J Biotechnol; 2020 Sep; 321():35-47. PubMed ID: 32622841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances in solid-state NMR of cellulose.
    Foston M
    Curr Opin Biotechnol; 2014 Jun; 27():176-84. PubMed ID: 24590189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative study for the organic byproducts from hydrothermal carbonizations of sugarcane bagasse and its bio-refined components cellulose and lignin.
    Du FL; Du QS; Dai J; Tang PD; Li YM; Long SY; Xie NZ; Wang QY; Huang RB
    PLoS One; 2018; 13(6):e0197188. PubMed ID: 29856735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellulose nanostructures obtained using enzymatic cocktails with different compositions.
    Bondancia TJ; Florencio C; Baccarin GS; Farinas CS
    Int J Biol Macromol; 2022 May; 207():299-307. PubMed ID: 35259434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanocellulose as a sustainable biomass material: structure, properties, present status and future prospects in biomedical applications.
    Xue Y; Mou Z; Xiao H
    Nanoscale; 2017 Oct; 9(39):14758-14781. PubMed ID: 28967940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.