These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 32791296)

  • 1. Development of laboratory-scale high-speed rotary devices for a potential pharmaceutical microfibre drug delivery platform.
    Sebe I; Kállai-Szabó B; Oldal I; Zsidai L; Zelkó R
    Int J Pharm; 2020 Oct; 588():119740. PubMed ID: 32791296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micro- and macrostructural characterization of polyvinylpirrolidone rotary-spun fibers.
    Sebe I; Kállai-Szabó B; Kovács KN; Szabadi E; Zelkó R
    Drug Dev Ind Pharm; 2015; 41(11):1829-34. PubMed ID: 25690306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polymer structure and antimicrobial activity of polyvinylpyrrolidone-based iodine nanofibers prepared with high-speed rotary spinning technique.
    Sebe I; Szabó B; Nagy ZK; Szabó D; Zsidai L; Kocsis B; Zelkó R
    Int J Pharm; 2013 Dec; 458(1):99-103. PubMed ID: 24140543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SIS/aligned fibre scaffold designed to meet layered oesophageal tissue complexity and properties.
    Syed O; Kim JH; Keskin-Erdogan Z; Day RM; El-Fiqi A; Kim HW; Knowles JC
    Acta Biomater; 2019 Nov; 99():181-195. PubMed ID: 31446049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering hybrid polymer-protein super-aligned nanofibers via rotary jet spinning.
    Badrossamay MR; Balachandran K; Capulli AK; Golecki HM; Agarwal A; Goss JA; Kim H; Shin K; Parker KK
    Biomaterials; 2014 Mar; 35(10):3188-97. PubMed ID: 24456606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Centrifugally spun PHBV micro and nanofibres.
    Upson SJ; O'Haire T; Russell SJ; Dalgarno K; Ferreira AM
    Mater Sci Eng C Mater Biol Appl; 2017 Jul; 76():190-195. PubMed ID: 28482516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solution fibre spinning technique for the fabrication of tuneable decellularised matrix-laden fibres and fibrous micromembranes.
    Li Z; Tuffin J; Lei IM; Ruggeri FS; Lewis NS; Gill EL; Savin T; Huleihel L; Badylak SF; Knowles T; Satchell SC; Welsh GI; Saleem MA; Huang YYS
    Acta Biomater; 2018 Sep; 78():111-122. PubMed ID: 30099199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic diameter and orientation distribution determination of fibrous materials in micro X-ray CT imaging data.
    Chiverton JP; Kao A; Roldo M; Tozzi G
    J Microsc; 2018 Dec; 272(3):180-195. PubMed ID: 29873819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrospinning and evaluation of PHBV-based tissue engineering scaffolds with different fibre diameters, surface topography and compositions.
    Tong HW; Wang M; Lu WW
    J Biomater Sci Polym Ed; 2012; 23(6):779-806. PubMed ID: 21418747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlating diameter, mechanical and structural properties of poly(l-lactide) fibres from needleless electrospinning.
    Morel A; Domaschke S; Urundolil Kumaran V; Alexeev D; Sadeghpour A; Ramakrishna SN; Ferguson SJ; Rossi RM; Mazza E; Ehret AE; Fortunato G
    Acta Biomater; 2018 Nov; 81():169-183. PubMed ID: 30273744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradable particulate composite reinforced with nanofibres for biomedical applications.
    Pinho ED; Martins A; Araújo JV; Reis RL; Neves NM
    Acta Biomater; 2009 May; 5(4):1104-14. PubMed ID: 19136320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of jet speed on large volume jet injection.
    McKeage JW; Ruddy BP; Nielsen PMF; Taberner AJ
    J Control Release; 2018 Jun; 280():51-57. PubMed ID: 29723614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro and in silico characterization of fibrous scaffolds comprising alternate colistin sulfate-loaded and heat-treated polyvinyl alcohol nanofibrous sheets.
    Sebe I; Ostorházi E; Bodai Z; Eke Z; Szakács J; Kovács NK; Zelkó R
    Int J Pharm; 2017 May; 523(1):151-158. PubMed ID: 28341150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simple and high production rate manufacturing method for submicron polymer fibres.
    Huttunen M; Kellomäki M
    J Tissue Eng Regen Med; 2011 Aug; 5(8):e239-43. PubMed ID: 21485008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of directly compressed vitamin B12 tablets prepared from micronized rotary-spun microfibers and cast films.
    Sebe I; Bodai Z; Eke Z; Kállai-Szabó B; Szabó P; Zelkó R
    Drug Dev Ind Pharm; 2015; 41(9):1438-42. PubMed ID: 25190153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gravity spun polycaprolactone fibres: controlling release of a hydrophilic macromolecule (ovalbumin) and a lipophilic drug (progesterone).
    Williamson MR; Chang HI; Coombes AG
    Biomaterials; 2004 Sep; 25(20):5053-60. PubMed ID: 15109868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Preparation and possibilities for pharmaceutical use of nano- and microfiber systems I].
    Sebe I; Petzke M; Zelkó R; Szabó B
    Acta Pharm Hung; 2013; 83(3):96-104. PubMed ID: 24369588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent Advances in Microfluidically Spun Microfibers for Tissue Engineering and Drug Delivery Applications.
    Magnani JS; Montazami R; Hashemi NN
    Annu Rev Anal Chem (Palo Alto Calif); 2021 Jul; 14(1):185-205. PubMed ID: 33940929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gravity spinning of polycaprolactone fibres for applications in tissue engineering.
    Williamson MR; Coombes AG
    Biomaterials; 2004 Feb; 25(3):459-65. PubMed ID: 14585694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polycaprolactone fibres as a potential delivery system for collagen to support bone regeneration.
    McNeil SE; Griffiths HR; Perrie Y
    Curr Drug Deliv; 2011 Jul; 8(4):448-55. PubMed ID: 21235468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.