These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 32791296)
21. A comparison between electrospinning and rotary-jet spinning to produce PCL fibers with low bacteria colonization. Machado-Paula MM; Corat MAF; Lancellotti M; Mi G; Marciano FR; Vega ML; Hidalgo AA; Webster TJ; Lobo AO Mater Sci Eng C Mater Biol Appl; 2020 Jun; 111():110706. PubMed ID: 32279777 [TBL] [Abstract][Full Text] [Related]
22. Volume orientation: a practical solution to analyse the orientation of fibres in composite materials. DE Pascalis F; Nacucchi M J Microsc; 2019 Oct; 276(1):27-38. PubMed ID: 31541459 [TBL] [Abstract][Full Text] [Related]
23. Microstructural Distinction of Electrospun Nanofibrous Drug Delivery Systems Formulated with Different Excipients. Kazsoki A; Szabó P; Domján A; Balázs A; Bozó T; Kellermayer M; Farkas A; Balogh-Weiser D; Pinke B; Darcsi A; Béni S; Madarász J; Szente L; Zelkó R Mol Pharm; 2018 Sep; 15(9):4214-4225. PubMed ID: 30024759 [TBL] [Abstract][Full Text] [Related]
25. Needle-free small-volume liquid injection system powered by a rotary actuator. Aoyu Zhang ; Hogan NC; Hunter IW Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():292-295. PubMed ID: 29059868 [TBL] [Abstract][Full Text] [Related]
26. Positron Annihilation Lifetime Spectroscopy as a Special Technique for the Solid-State Characterization of Pharmaceutical Excipients, Drug Delivery Systems, and Medical Devices-A Systematic Review. Shokoya MM; Benkő BM; Süvegh K; Zelkó R; Sebe I Pharmaceuticals (Basel); 2023 Feb; 16(2):. PubMed ID: 37259399 [TBL] [Abstract][Full Text] [Related]
27. Crack formation during post-treatment of nano- and microfibres prepared by sol-gel technique. Tätte T; Kolesnikova AL; Hussainov M; Talviste R; Lõhmus R; Romanov AE; Hussainova I; Part M; Lõhmus A J Nanosci Nanotechnol; 2010 Sep; 10(9):6009-16. PubMed ID: 21133140 [TBL] [Abstract][Full Text] [Related]
28. Mechanistic study on rapid fabrication of fibrous films via centrifugal melt spinning. Yang Y; Zheng N; Zhou Y; Shan W; Shen J Int J Pharm; 2019 Apr; 560():155-165. PubMed ID: 30769130 [TBL] [Abstract][Full Text] [Related]
29. Tracking of crystalline-amorphous transition of carvedilol in rotary spun microfibers and their formulation to orodispersible tablets for in vitro dissolution enhancement. Szabó P; Sebe I; Stiedl B; Kállai-Szabó B; Zelkó R J Pharm Biomed Anal; 2015 Nov; 115():359-67. PubMed ID: 26280924 [TBL] [Abstract][Full Text] [Related]
30. Development of novel tissue engineering scaffolds via electrospinning. Nair LS; Bhattacharyya S; Laurencin CT Expert Opin Biol Ther; 2004 May; 4(5):659-68. PubMed ID: 15155157 [TBL] [Abstract][Full Text] [Related]
32. Evaluation of an air spinning process to produce tailored biosynthetic nanofibre scaffolds. Sabbatier G; Abadie P; Dieval F; Durand B; Laroche G Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():347-53. PubMed ID: 24411387 [TBL] [Abstract][Full Text] [Related]
33. Fabrication of biomimetic bundled gel fibres using dynamic microfluidic gelation of phase-separated polymer solutions. Kim YJ; Takahashi Y; Kato N; Matsunaga YT J Mater Chem B; 2015 Nov; 3(41):8154-8161. PubMed ID: 32262872 [TBL] [Abstract][Full Text] [Related]
34. Control of pore size and structure of tissue engineering scaffolds produced by supercritical fluid processing. Tai H; Mather ML; Howard D; Wang W; White LJ; Crowe JA; Morgan SP; Chandra A; Williams DJ; Howdle SM; Shakesheff KM Eur Cell Mater; 2007 Dec; 14():64-77. PubMed ID: 18085505 [TBL] [Abstract][Full Text] [Related]
35. Experimental and computational analysis of a pharmaceutical-grade shape memory polymer applied to the development of gastroretentive drug delivery systems. Inverardi N; Scalet G; Melocchi A; Uboldi M; Maroni A; Zema L; Gazzaniga A; Auricchio F; Briatico-Vangosa F; Baldi F; Pandini S J Mech Behav Biomed Mater; 2021 Dec; 124():104814. PubMed ID: 34534845 [TBL] [Abstract][Full Text] [Related]
36. Novel application of plasma treatment for pharmaceutical and biomedical engineering. Kuzuya M; Sasai Y; Kondo S; Yamauchi Y Curr Drug Discov Technol; 2009 Jun; 6(2):135-50. PubMed ID: 19519338 [TBL] [Abstract][Full Text] [Related]
37. PVAm Nanofibers Fabricated by Rotary Jet Wet Spinning and Applied to Bisphenol A Recognition. Wu Y; Li C; Fan F; Liang J; Yang Z; Wei X; Chen S ACS Omega; 2019 Dec; 4(25):21361-21369. PubMed ID: 31867531 [TBL] [Abstract][Full Text] [Related]
38. New biotextiles for tissue engineering: development, characterization and in vitro cellular viability. Almeida LR; Martins AR; Fernandes EM; Oliveira MB; Mano JF; Correlo VM; Pashkuleva I; Marques AP; Ribeiro AS; Durães NF; Silva CJ; Bonifácio G; Sousa RA; Oliveira AL; Reis RL Acta Biomater; 2013 Sep; 9(9):8167-81. PubMed ID: 23727248 [TBL] [Abstract][Full Text] [Related]
39. Centrifugally-spun polyhydroxybutyrate fibres: effect of process solvent on structure, morphology and cell response. Foster LJ; Davies SM; Ti BJ J Biomater Sci Polym Ed; 2001; 12(3):317-36. PubMed ID: 11484940 [TBL] [Abstract][Full Text] [Related]
40. Additive manufacturing of wet-spun polymeric scaffolds for bone tissue engineering. Puppi D; Mota C; Gazzarri M; Dinucci D; Gloria A; Myrzabekova M; Ambrosio L; Chiellini F Biomed Microdevices; 2012 Dec; 14(6):1115-27. PubMed ID: 22767245 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]