These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 32791338)
1. DeepTL-Ubi: A novel deep transfer learning method for effectively predicting ubiquitination sites of multiple species. Liu Y; Li A; Zhao XM; Wang M Methods; 2021 Aug; 192():103-111. PubMed ID: 32791338 [TBL] [Abstract][Full Text] [Related]
2. Machine learning-based approaches for ubiquitination site prediction in human proteins. Pourmirzaei M; Ramazi S; Esmaili F; Shojaeilangari S; Allahvardi A BMC Bioinformatics; 2023 Nov; 24(1):449. PubMed ID: 38017391 [TBL] [Abstract][Full Text] [Related]
3. A Caps-Ubi Model for Protein Ubiquitination Site Prediction. Luo Y; Jiang J; Zhu J; Huang Q; Li W; Wang Y; Gao Y Front Plant Sci; 2022; 13():884903. PubMed ID: 35693166 [TBL] [Abstract][Full Text] [Related]
4. Large-scale prediction of protein ubiquitination sites using a multimodal deep architecture. He F; Wang R; Li J; Bao L; Xu D; Zhao X BMC Syst Biol; 2018 Nov; 12(Suppl 6):109. PubMed ID: 30463553 [TBL] [Abstract][Full Text] [Related]
5. Predicting protein phosphorylation sites in soybean using interpretable deep tabular learning network. Khalili E; Ramazi S; Ghanati F; Kouchaki S Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35152280 [TBL] [Abstract][Full Text] [Related]
6. Analysis and review of techniques and tools based on machine learning and deep learning for prediction of lysine malonylation sites in protein sequences. Ramazi S; Tabatabaei SAH; Khalili E; Nia AG; Motarjem K Database (Oxford); 2024 Jan; 2024():. PubMed ID: 38245002 [TBL] [Abstract][Full Text] [Related]
7. UPFPSR: a ubiquitylation predictor for plant through combining sequence information and random forest. Yin S; Zheng J; Jia C; Zou Q; Lin Z; Shi H Math Biosci Eng; 2022 Jan; 19(1):775-791. PubMed ID: 34903012 [TBL] [Abstract][Full Text] [Related]
8. ResNetKhib: a novel cell type-specific tool for predicting lysine 2-hydroxyisobutylation sites via transfer learning. Jia X; Zhao P; Li F; Qin Z; Ren H; Li J; Miao C; Zhao Q; Akutsu T; Dou G; Chen Z; Song J Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36880172 [TBL] [Abstract][Full Text] [Related]
9. Multi-dimensional feature recognition model based on capsule network for ubiquitination site prediction. Li W; Wang J; Luo Y; Bezabih TT PeerJ; 2022; 10():e14427. PubMed ID: 36523471 [TBL] [Abstract][Full Text] [Related]
10. nhKcr: a new bioinformatics tool for predicting crotonylation sites on human nonhistone proteins based on deep learning. Chen YZ; Wang ZZ; Wang Y; Ying G; Chen Z; Song J Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34002774 [TBL] [Abstract][Full Text] [Related]
11. Computational methods for ubiquitination site prediction using physicochemical properties of protein sequences. Cai B; Jiang X BMC Bioinformatics; 2016 Mar; 17():116. PubMed ID: 26940649 [TBL] [Abstract][Full Text] [Related]
12. PrUb-EL: A hybrid framework based on deep learning for identifying ubiquitination sites in Arabidopsis thaliana using ensemble learning strategy. Wang H; Li H; Gao W; Xie J Anal Biochem; 2022 Dec; 658():114935. PubMed ID: 36206844 [TBL] [Abstract][Full Text] [Related]
13. Prediction of protein ubiquitination sites via multi-view features based on eXtreme gradient boosting classifier. Liu Y; Jin S; Song L; Han Y; Yu B J Mol Graph Model; 2021 Sep; 107():107962. PubMed ID: 34198216 [TBL] [Abstract][Full Text] [Related]
14. Towards Computational Models of Identifying Protein Ubiquitination Sites. Wang L; Zhang R Curr Drug Targets; 2019; 20(5):565-578. PubMed ID: 30246637 [TBL] [Abstract][Full Text] [Related]
15. UbiComb: A Hybrid Deep Learning Model for Predicting Plant-Specific Protein Ubiquitylation Sites. Siraj A; Lim DY; Tayara H; Chong KT Genes (Basel); 2021 May; 12(5):. PubMed ID: 34064731 [TBL] [Abstract][Full Text] [Related]
16. PTM-ssMP: A Web Server for Predicting Different Types of Post-translational Modification Sites Using Novel Site-specific Modification Profile. Liu Y; Wang M; Xi J; Luo F; Li A Int J Biol Sci; 2018; 14(8):946-956. PubMed ID: 29989096 [TBL] [Abstract][Full Text] [Related]
17. Computational Prediction of Ubiquitination Proteins Using Evolutionary Profiles and Functional Domain Annotation. Qiu W; Xu C; Xiao X; Xu D Curr Genomics; 2019 Aug; 20(5):389-399. PubMed ID: 32476995 [TBL] [Abstract][Full Text] [Related]
18. DeepPhos: prediction of protein phosphorylation sites with deep learning. Luo F; Wang M; Liu Y; Zhao XM; Li A Bioinformatics; 2019 Aug; 35(16):2766-2773. PubMed ID: 30601936 [TBL] [Abstract][Full Text] [Related]
19. PseAraUbi: predicting arabidopsis ubiquitination sites by incorporating the physico-chemical and structural features. Wang W; Zhang Y; Liu D; Zhang H; Wang X; Zhou Y Plant Mol Biol; 2022 Sep; 110(1-2):81-92. PubMed ID: 35773617 [TBL] [Abstract][Full Text] [Related]
20. DF-Phos: Prediction of Protein Phosphorylation Sites by Deep Forest. Zahiri Z; Mehrshad N; Mehrshad M J Biochem; 2024 Mar; 175(4):447-456. PubMed ID: 38153271 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]