BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1167 related articles for article (PubMed ID: 32791828)

  • 1. Stretchable Nanocomposite Sensors, Nanomembrane Interconnectors, and Wireless Electronics toward Feedback-Loop Control of a Soft Earthworm Robot.
    Goldoni R; Ozkan-Aydin Y; Kim YS; Kim J; Zavanelli N; Mahmood M; Liu B; Hammond FL; Goldman DI; Yeo WH
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):43388-43397. PubMed ID: 32791828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly Stretchable Core-Sheath Fibers via Wet-Spinning for Wearable Strain Sensors.
    Tang Z; Jia S; Wang F; Bian C; Chen Y; Wang Y; Li B
    ACS Appl Mater Interfaces; 2018 Feb; 10(7):6624-6635. PubMed ID: 29384359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated Soft Ionotronic Skin with Stretchable and Transparent Hydrogel-Elastomer Ionic Sensors for Hand-Motion Monitoring.
    Gu G; Xu H; Peng S; Li L; Chen S; Lu T; Guo X
    Soft Robot; 2019 Jun; 6(3):368-376. PubMed ID: 30848994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stretchable, Skin-Attachable Electronics with Integrated Energy Storage Devices for Biosignal Monitoring.
    Jeong YR; Lee G; Park H; Ha JS
    Acc Chem Res; 2019 Jan; 52(1):91-99. PubMed ID: 30586283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Materials, Structures, and Functions for Flexible and Stretchable Biomimetic Sensors.
    Li T; Li Y; Zhang T
    Acc Chem Res; 2019 Feb; 52(2):288-296. PubMed ID: 30653299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Printed, Wireless, Soft Bioelectronics and Deep Learning Algorithm for Smart Human-Machine Interfaces.
    Kwon YT; Kim H; Mahmood M; Kim YS; Demolder C; Yeo WH
    ACS Appl Mater Interfaces; 2020 Nov; 12(44):49398-49406. PubMed ID: 33085453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon/Silicone Nanocomposite-Enabled Soft Pressure Sensors with a Liquid-Filled Cell Structure Design for Low Pressure Measurement.
    Wang F; Tao X
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasensitive Strain Sensor Based on Separation of Overlapped Carbon Nanotubes.
    Lee J; Pyo S; Kwon DS; Jo E; Kim W; Kim J
    Small; 2019 Mar; 15(12):e1805120. PubMed ID: 30748123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A stretchable sensor for force estimation in soft wearable robots.
    Basla C; Georgarakis AM; Reichmuth M; Chen H; Wolf P; Lacour S; Riener R; Xiloyannis M
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine Learning-Enabled Environmentally Adaptable Skin-Electronic Sensor for Human Gesture Recognition.
    Song Y; Nguyen TH; Lee D; Kim J
    ACS Appl Mater Interfaces; 2024 Feb; 16(7):9551-9560. PubMed ID: 38331574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterogeneous Strain Distribution of Elastomer Substrates To Enhance the Sensitivity of Stretchable Strain Sensors.
    Jiang Y; Liu Z; Wang C; Chen X
    Acc Chem Res; 2019 Jan; 52(1):82-90. PubMed ID: 30586278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coaxial Printing of Silicone Elastomer Composite Fibers for Stretchable and Wearable Piezoresistive Sensors.
    Tang Z; Jia S; Shi X; Li B; Zhou C
    Polymers (Basel); 2019 Apr; 11(4):. PubMed ID: 30979015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lab-on-Skin: A Review of Flexible and Stretchable Electronics for Wearable Health Monitoring.
    Liu Y; Pharr M; Salvatore GA
    ACS Nano; 2017 Oct; 11(10):9614-9635. PubMed ID: 28901746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Sensitive Wearable Strain Sensors Based on the Carbon Nanotubes@Porous Soft Silicone Elastomer with Excellent Stretchability, Durability, and Biocompatibility.
    Li Q; Liu Y; Chen D; Miao J; Zhang C; Cui D
    ACS Appl Mater Interfaces; 2022 Nov; 14(45):51373-51383. PubMed ID: 36326601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wireless, intraoral hybrid electronics for real-time quantification of sodium intake toward hypertension management.
    Lee Y; Howe C; Mishra S; Lee DS; Mahmood M; Piper M; Kim Y; Tieu K; Byun HS; Coffey JP; Shayan M; Chun Y; Costanzo RM; Yeo WH
    Proc Natl Acad Sci U S A; 2018 May; 115(21):5377-5382. PubMed ID: 29735689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasensitive Wearable Strain Sensors based on a VACNT/PDMS Thin Film for a Wide Range of Human Motion Monitoring.
    Paul SJ; Elizabeth I; Gupta BK
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):8871-8879. PubMed ID: 33588524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite.
    Amjadi M; Pichitpajongkit A; Lee S; Ryu S; Park I
    ACS Nano; 2014 May; 8(5):5154-63. PubMed ID: 24749972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conductive Polymer Nanocomposites for Stretchable Electronics: Material Selection, Design, and Applications.
    Peng S; Yu Y; Wu S; Wang CH
    ACS Appl Mater Interfaces; 2021 Sep; 13(37):43831-43854. PubMed ID: 34515471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Printed, Soft, Nanostructured Strain Sensors for Monitoring of Structural Health and Human Physiology.
    Herbert R; Lim HR; Yeo WH
    ACS Appl Mater Interfaces; 2020 Jun; 12(22):25020-25030. PubMed ID: 32393022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Soft Electronics Based on Stretchable and Conductive Nanocomposites for Biomedical Applications.
    Llerena Zambrano B; Renz AF; Ruff T; Lienemann S; Tybrandt K; Vörös J; Lee J
    Adv Healthc Mater; 2021 Feb; 10(3):e2001397. PubMed ID: 33205564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 59.