These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

545 related articles for article (PubMed ID: 32791829)

  • 1. Carbon Nanotube Photoluminescence Modulation by Local Chemical and Supramolecular Chemical Functionalization.
    Shiraki T; Miyauchi Y; Matsuda K; Nakashima N
    Acc Chem Res; 2020 Sep; 53(9):1846-1859. PubMed ID: 32791829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein-structure-dependent spectral shifts of near-infrared photoluminescence from locally functionalized single-walled carbon nanotubes based on avidin-biotin interactions.
    Niidome Y; Wakabayashi R; Goto M; Fujigaya T; Shiraki T
    Nanoscale; 2022 Sep; 14(36):13090-13097. PubMed ID: 35938498
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Yu B; Naka S; Aoki H; Kato K; Yamashita D; Fujii S; Kato YK; Fujigaya T; Shiraki T
    ACS Nano; 2022 Dec; 16(12):21452-21461. PubMed ID: 36384293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling Defect-State Photophysics in Covalently Functionalized Single-Walled Carbon Nanotubes.
    Gifford BJ; Kilina S; Htoon H; Doorn SK; Tretiak S
    Acc Chem Res; 2020 Sep; 53(9):1791-1801. PubMed ID: 32805109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emergence of new red-shifted carbon nanotube photoluminescence based on proximal doped-site design.
    Shiraki T; Shiraishi T; Juhász G; Nakashima N
    Sci Rep; 2016 Jun; 6():28393. PubMed ID: 27345862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoluminescence Dynamics Defined by Exciton Trapping Potential of Coupled Defect States in DNA-Functionalized Carbon Nanotubes.
    Zheng Y; Weight BM; Jones AC; Chandrasekaran V; Gifford BJ; Tretiak S; Doorn SK; Htoon H
    ACS Nano; 2021 Jan; 15(1):923-933. PubMed ID: 33395262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoluminescence Dynamics of Aryl sp(3) Defect States in Single-Walled Carbon Nanotubes.
    Hartmann NF; Velizhanin KA; Haroz EH; Kim M; Ma X; Wang Y; Htoon H; Doorn SK
    ACS Nano; 2016 Sep; 10(9):8355-65. PubMed ID: 27529740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple exciton generation and recombination in carbon nanotubes and nanocrystals.
    Kanemitsu Y
    Acc Chem Res; 2013 Jun; 46(6):1358-66. PubMed ID: 23421584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suppression of exciton dephasing in sidewall-functionalized carbon nanotubes embedded into metallo-dielectric antennas.
    Shayan K; He X; Luo Y; Rabut C; Li X; Hartmann NF; Blackburn JL; Doorn SK; Htoon H; Strauf S
    Nanoscale; 2018 Jul; 10(26):12631-12638. PubMed ID: 29943788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How to recognize clustering of luminescent defects in single-wall carbon nanotubes.
    Sebastian FL; Settele S; Li H; Flavel BS; Zaumseil J
    Nanoscale Horiz; 2024 Nov; 9(12):2286-2294. PubMed ID: 39380328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Propagative Sidewall Alkylcarboxylation that Induces Red-Shifted Near-IR Photoluminescence in Single-Walled Carbon Nanotubes.
    Zhang Y; Valley N; Brozena AH; Piao Y; Song X; Schatz GC; Wang Y
    J Phys Chem Lett; 2013 Mar; 4(5):826-30. PubMed ID: 26281939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multistep Wavelength Switching of Near-Infrared Photoluminescence Driven by Chemical Reactions at Local Doped Sites of Single-Walled Carbon Nanotubes.
    Shiraki T; Shiga T; Shiraishi T; Onitsuka H; Nakashima N; Fujigaya T
    Chemistry; 2018 Dec; 24(72):19162-19165. PubMed ID: 30370950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic structure and chemical nature of oxygen dopant states in carbon nanotubes.
    Ma X; Adamska L; Yamaguchi H; Yalcin SE; Tretiak S; Doorn SK; Htoon H
    ACS Nano; 2014 Oct; 8(10):10782-9. PubMed ID: 25265272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoluminescence Intensity Fluctuations and Temperature-Dependent Decay Dynamics of Individual Carbon Nanotube sp
    Kim Y; Velizhanin KA; He X; Sarpkaya I; Yomogida Y; Tanaka T; Kataura H; Doorn SK; Htoon H
    J Phys Chem Lett; 2019 Mar; 10(6):1423-1430. PubMed ID: 30848914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substituent effects on the redox states of locally functionalized single-walled carbon nanotubes revealed by in situ photoluminescence spectroelectrochemistry.
    Shiraishi T; Shiraki T; Nakashima N
    Nanoscale; 2017 Nov; 9(43):16900-16907. PubMed ID: 29077106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrafast Exciton Trapping at
    Sykes ME; Kim M; Wu X; Wiederrecht GP; Peng L; Wang Y; Gosztola DJ; Ma X
    ACS Nano; 2019 Nov; 13(11):13264-13270. PubMed ID: 31661244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-Temperature Single Carbon Nanotube Spectroscopy of sp
    He X; Gifford BJ; Hartmann NF; Ihly R; Ma X; Kilina SV; Luo Y; Shayan K; Strauf S; Blackburn JL; Tretiak S; Doorn SK; Htoon H
    ACS Nano; 2017 Nov; 11(11):10785-10796. PubMed ID: 28958146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of the Near Infrared Photoluminescence of Locally Functionalized Single-Walled Carbon Nanotubes via Doping by Azacrown-Ether Modification.
    Onitsuka H; Fujigaya T; Nakashima N; Shiraki T
    Chemistry; 2018 Jul; 24(37):9393-9398. PubMed ID: 29741218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoluminescence Quantum Yield of Single-Wall Carbon Nanotubes Corrected for the Photon Reabsorption Effect.
    Wei X; Tanaka T; Li S; Tsuzuki M; Wang G; Yao Z; Li L; Yomogida Y; Hirano A; Liu H; Kataura H
    Nano Lett; 2020 Jan; 20(1):410-417. PubMed ID: 31860318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent progress in controlling the photoluminescence properties of single-walled carbon nanotubes by oxidation and alkylation.
    Maeda Y; Zhao P; Ehara M
    Chem Commun (Camb); 2023 Dec; 59(98):14497-14508. PubMed ID: 38009193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.