BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 32791988)

  • 21. ErbB-2 induces the cyclin D1 gene in prostate epithelial cells in vitro and in vivo.
    Casimiro M; Rodriguez O; Pootrakul L; Aventian M; Lushina N; Cromelin C; Ferzli G; Johnson K; Fricke S; Diba F; Kallakury B; Ohanyerenwa C; Chen M; Ostrowski M; Hung MC; Rabbani SA; Datar R; Cote R; Pestell R; Albanese C
    Cancer Res; 2007 May; 67(9):4364-72. PubMed ID: 17483350
    [TBL] [Abstract][Full Text] [Related]  

  • 22. p21 and p27 induction by silibinin is essential for its cell cycle arrest effect in prostate carcinoma cells.
    Roy S; Kaur M; Agarwal C; Tecklenburg M; Sclafani RA; Agarwal R
    Mol Cancer Ther; 2007 Oct; 6(10):2696-707. PubMed ID: 17938263
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A mouse model of heterogeneous, c-MYC-initiated prostate cancer with loss of Pten and p53.
    Kim J; Roh M; Doubinskaia I; Algarroba GN; Eltoum IE; Abdulkadir SA
    Oncogene; 2012 Jan; 31(3):322-32. PubMed ID: 21685943
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cooperation between Stat3 and Akt signaling leads to prostate tumor development in transgenic mice.
    Blando JM; Carbajal S; Abel E; Beltran L; Conti C; Fischer S; DiGiovanni J
    Neoplasia; 2011 Mar; 13(3):254-65. PubMed ID: 21390188
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prostate stem cell compartments: expression of the cell cycle inhibitor p27Kip1 in normal, hyperplastic, and neoplastic cells.
    De Marzo AM; Meeker AK; Epstein JI; Coffey DS
    Am J Pathol; 1998 Sep; 153(3):911-9. PubMed ID: 9736039
    [TBL] [Abstract][Full Text] [Related]  

  • 26. p27T187A knockin identifies Skp2/Cks1 pocket inhibitors for advanced prostate cancer.
    Zhao H; Lu Z; Bauzon F; Fu H; Cui J; Locker J; Zhu L
    Oncogene; 2017 Jan; 36(1):60-70. PubMed ID: 27181203
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Caveolin-1 upregulation contributes to c-Myc-induced high-grade prostatic intraepithelial neoplasia and prostate cancer.
    Yang G; Goltsov AA; Ren C; Kurosaka S; Edamura K; Logothetis R; DeMayo FJ; Troncoso P; Blando J; DiGiovanni J; Thompson TC
    Mol Cancer Res; 2012 Feb; 10(2):218-29. PubMed ID: 22144662
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recruitment of NCOR1 to VDR target genes is enhanced in prostate cancer cells and associates with altered DNA methylation patterns.
    Doig CL; Singh PK; Dhiman VK; Thorne JL; Battaglia S; Sobolewski M; Maguire O; O'Neill LP; Turner BM; McCabe CJ; Smiraglia DJ; Campbell MJ
    Carcinogenesis; 2013 Feb; 34(2):248-56. PubMed ID: 23087083
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Indirect p53-dependent transcriptional repression of Survivin, CDC25C, and PLK1 genes requires the cyclin-dependent kinase inhibitor p21/CDKN1A and CDE/CHR promoter sites binding the DREAM complex.
    Fischer M; Quaas M; Nickel A; Engeland K
    Oncotarget; 2015 Dec; 6(39):41402-17. PubMed ID: 26595675
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deletion of p21/Cdkn1a confers protective effect against prostate tumorigenesis in transgenic adenocarcinoma of the mouse prostate model.
    Jain AK; Raina K; Agarwal R
    Cell Cycle; 2013 May; 12(10):1598-604. PubMed ID: 23624841
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Loss of FOXO1 Cooperates with TMPRSS2-ERG Overexpression to Promote Prostate Tumorigenesis and Cell Invasion.
    Yang Y; Blee AM; Wang D; An J; Pan Y; Yan Y; Ma T; He Y; Dugdale J; Hou X; Zhang J; Weroha SJ; Zhu WG; Wang YA; DePinho RA; Xu W; Huang H
    Cancer Res; 2017 Dec; 77(23):6524-6537. PubMed ID: 28986382
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of promyelocytic leukemia zinc finger (PLZF) in cell proliferation and cyclin-dependent kinase inhibitor 1A (p21WAF/CDKN1A) gene repression.
    Choi WI; Kim MY; Jeon BN; Koh DI; Yun CO; Li Y; Lee CE; Oh J; Kim K; Hur MW
    J Biol Chem; 2014 Jul; 289(27):18625-40. PubMed ID: 24821727
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Androgen-dependent prostate epithelial cell selection by targeting ARR(2)PBneo to the LPB-Tag model of prostate cancer.
    Wang Y; Kasper S; Yuan J; Jin RJ; Zhang J; Ishii K; Wills ML; Hayward SW; Matusik RJ
    Lab Invest; 2006 Oct; 86(10):1074-88. PubMed ID: 16894353
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Altered Ets transcription factor activity in prostate tumor cells inhibits anchorage-independent growth, survival, and invasiveness.
    Foos G; Hauser CA
    Oncogene; 2000 Nov; 19(48):5507-16. PubMed ID: 11114728
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development, progression, and androgen-dependence of prostate tumors in probasin-large T antigen transgenic mice: a model for prostate cancer.
    Kasper S; Sheppard PC; Yan Y; Pettigrew N; Borowsky AD; Prins GS; Dodd JG; Duckworth ML; Matusik RJ
    Lab Invest; 1998 Mar; 78(3):319-33. PubMed ID: 9520945
    [TBL] [Abstract][Full Text] [Related]  

  • 36. MicroRNA-590-3p promotes cell proliferation and invasion by targeting inositol polyphosphate 4-phosphatase type II in human prostate cancer cells.
    Chen H; Luo Q; Li H
    Tumour Biol; 2017 Mar; 39(3):1010428317695941. PubMed ID: 28345464
    [TBL] [Abstract][Full Text] [Related]  

  • 37. PIAS1 is increased in human prostate cancer and enhances proliferation through inhibition of p21.
    Hoefer J; Schäfer G; Klocker H; Erb HH; Mills IG; Hengst L; Puhr M; Culig Z
    Am J Pathol; 2012 May; 180(5):2097-107. PubMed ID: 22449952
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Conditional deletion of the Pten gene in the mouse prostate induces prostatic intraepithelial neoplasms at early ages but a slow progression to prostate tumors.
    Kwak MK; Johnson DT; Zhu C; Lee SH; Ye DW; Luong R; Sun Z
    PLoS One; 2013; 8(1):e53476. PubMed ID: 23308230
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deletion of the p16INK4a tumor suppressor and expression of the androgen receptor induce sarcomatoid carcinomas with signet ring cells in the mouse prostate.
    Lee DH; Yu EJ; Aldahl J; Yang J; He Y; Hooker E; Le V; Mi J; Olson A; Wu H; Geradts J; Xiao GQ; Gonzalgo ML; Cardiff RD; Sun Z
    PLoS One; 2019; 14(1):e0211153. PubMed ID: 30677079
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanisms involved in resveratrol-induced apoptosis and cell cycle arrest in prostate cancer-derived cell lines.
    Benitez DA; Pozo-Guisado E; Alvarez-Barrientos A; Fernandez-Salguero PM; Castellón EA
    J Androl; 2007; 28(2):282-93. PubMed ID: 17050787
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.