These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 32792147)

  • 1. Frequency-shaped sliding mode control of piezoelectric nano-stages with hysteresis estimation.
    Zhang Y; Yan P; Zhang Z
    ISA Trans; 2020 Dec; 107():340-349. PubMed ID: 32792147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite-time adaptive sliding mode control for high-precision tracking of piezo-actuated stages.
    Wang Z; Xu R; Wang L; Tian D
    ISA Trans; 2022 Oct; 129(Pt A):436-445. PubMed ID: 34974911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trajectory tracking of piezoelectric positioning stages using a dynamic sliding-mode control.
    Shieh HJ; Huang PK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Oct; 53(10):1872-82. PubMed ID: 17036795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive compound control based on generalized Bouc-Wen inverse hysteresis modeling in piezoelectric actuators.
    Zhang Q; Gao Y; Li Q; Yin D
    Rev Sci Instrum; 2021 Nov; 92(11):115004. PubMed ID: 34852500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calculation of the modified control matrix for a selected unimorph deformable mirror to compensate the piezoelectric hysteresis effect using the inverse Bouc-Wen model.
    Aghababayee MA; Mosayebi M; Saghafifar H
    Appl Opt; 2022 Mar; 61(9):2293-2305. PubMed ID: 35333247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational Efficiency-Based Adaptive Tracking Control for Robotic Manipulators with Unknown Input Bouc-Wen Hysteresis.
    Xie K; Lai Y; Li W
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31226845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global fast non-singular terminal sliding-mode control for high-speed nanopositioning.
    Wang G; Zhou Y; Ni L; Aphale SS
    ISA Trans; 2023 May; 136():560-570. PubMed ID: 36372602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling and compensation of hysteresis in piezoelectric actuators.
    Yu Z; Wu Y; Fang Z; Sun H
    Heliyon; 2020 May; 6(5):e03999. PubMed ID: 32509984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An enhanced Bouc-Wen model for characterizing rate-dependent hysteresis of piezoelectric actuators.
    Gan J; Zhang X
    Rev Sci Instrum; 2018 Nov; 89(11):115002. PubMed ID: 30501291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Compound Control Based on the Piezo-Actuated Stage with Bouc-Wen Model.
    Fang J; Wang J; Li C; Zhong W; Long Z
    Micromachines (Basel); 2019 Dec; 10(12):. PubMed ID: 31817860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hysteresis Compensation and Sliding Mode Control with Perturbation Estimation for Piezoelectric Actuators.
    Ding B; Li Y
    Micromachines (Basel); 2018 May; 9(5):. PubMed ID: 30424174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nano-Scale Positioning Design with Piezoelectric Materials.
    Chen YY; Chen YH; Huang CY
    Micromachines (Basel); 2017 Dec; 8(12):. PubMed ID: 30400550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive nonsingular terminal sliding mode controller for micro/nanopositioning systems driven by linear piezoelectric ceramic motors.
    Safa A; Abdolmalaki RY; Shafiee S; Sadeghi B
    ISA Trans; 2018 Jun; 77():122-132. PubMed ID: 29661549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultra-precise tracking control of piezoelectric actuators via a fuzzy hysteresis model.
    Li P; Yan F; Ge C; Zhang M
    Rev Sci Instrum; 2012 Aug; 83(8):085114. PubMed ID: 22938339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Finite-Time Sliding-Mode Controller Based on the Disturbance Observer and Neural Network for Hysteretic Systems with Application in Piezoelectric Actuators.
    Cheng L; Chen W; Tian L; Xie Y
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive sliding mode enhanced disturbance observer-based control of surgical device.
    Lau JY; Liang W; Tan KK
    ISA Trans; 2019 Jul; 90():178-188. PubMed ID: 30792129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Composite proportional-integral sliding mode control with feedforward control for cell puncture mechanism with piezoelectric actuation.
    Yu S; Xie M; Wu H; Ma J; Li Y; Gu H
    ISA Trans; 2022 May; 124():427-435. PubMed ID: 32081400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fuzzy sliding mode control of piezo-driven stage.
    Fang J; Zhao J; Zhang L; Li C; Zhong W; Zhang L
    Rev Sci Instrum; 2022 Jan; 93(1):015011. PubMed ID: 35104963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trajectory tracking control of a pneumatically actuated continuum manipulator in the presence of obstacles by using terminal sliding mode control.
    Mishra MK; Chakraborty G; Samantaray AK
    ISA Trans; 2023 Dec; 143():79-93. PubMed ID: 37669887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-delay control scheme with adaptive fixed-time convergent super-twisting fractional-order nonsingular terminal sliding mode for piezoelectric displacement amplifier.
    Song Z; Wang L; Ling J; Wang L; Duan J; Wang Y; Chen B
    ISA Trans; 2024 Mar; 146():99-113. PubMed ID: 38123414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.