These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 32792488)

  • 1. ABHD11 maintains 2-oxoglutarate metabolism by preserving functional lipoylation of the 2-oxoglutarate dehydrogenase complex.
    Bailey PSJ; Ortmann BM; Martinelli AW; Houghton JW; Costa ASH; Burr SP; Antrobus R; Frezza C; Nathan JA
    Nat Commun; 2020 Aug; 11(1):4046. PubMed ID: 32792488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mitochondrial 2-oxoadipate and 2-oxoglutarate dehydrogenase complexes share their E2 and E3 components for their function and both generate reactive oxygen species.
    Nemeria NS; Gerfen G; Nareddy PR; Yang L; Zhang X; Szostak M; Jordan F
    Free Radic Biol Med; 2018 Feb; 115():136-145. PubMed ID: 29191460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic control exerted by the 2-oxoglutarate dehydrogenase reaction: a cross-kingdom comparison of the crossroad between energy production and nitrogen assimilation.
    Bunik VI; Fernie AR
    Biochem J; 2009 Aug; 422(3):405-21. PubMed ID: 19698086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The human Krebs cycle 2-oxoglutarate dehydrogenase complex creates an additional source of superoxide/hydrogen peroxide from 2-oxoadipate as alternative substrate.
    Nemeria NS; Gerfen G; Guevara E; Nareddy PR; Szostak M; Jordan F
    Free Radic Biol Med; 2017 Jul; 108():644-654. PubMed ID: 28435050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial Protein Lipoylation and the 2-Oxoglutarate Dehydrogenase Complex Controls HIF1α Stability in Aerobic Conditions.
    Burr SP; Costa AS; Grice GL; Timms RT; Lobb IT; Freisinger P; Dodd RB; Dougan G; Lehner PJ; Frezza C; Nathan JA
    Cell Metab; 2016 Nov; 24(5):740-752. PubMed ID: 27923773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poldip2 is an oxygen-sensitive protein that controls PDH and αKGDH lipoylation and activation to support metabolic adaptation in hypoxia and cancer.
    Paredes F; Sheldon K; Lassègue B; Williams HC; Faidley EA; Benavides GA; Torres G; Sanhueza-Olivares F; Yeligar SM; Griendling KK; Darley-Usmar V; San Martin A
    Proc Natl Acad Sci U S A; 2018 Feb; 115(8):1789-1794. PubMed ID: 29434038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel isoenzyme of 2-oxoglutarate dehydrogenase is identified in brain, but not in heart.
    Bunik V; Kaehne T; Degtyarev D; Shcherbakova T; Reiser G
    FEBS J; 2008 Oct; 275(20):4990-5006. PubMed ID: 18783430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the role of the mitochondrial 2-oxoglutarate dehydrogenase complex in amino acid metabolism.
    Araújo WL; Trofimova L; Mkrtchyan G; Steinhauser D; Krall L; Graf A; Fernie AR; Bunik VI
    Amino Acids; 2013 Feb; 44(2):683-700. PubMed ID: 22983303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 2-Oxoglutarate dehydrogenase and pyruvate dehydrogenase activities in plant mitochondria: interaction via a common coenzyme a pool.
    Dry IB; Wiskich JT
    Arch Biochem Biophys; 1987 Aug; 257(1):92-9. PubMed ID: 3631965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutations in the lipoyltransferase LIPT1 gene cause a fatal disease associated with a specific lipoylation defect of the 2-ketoacid dehydrogenase complexes.
    Tort F; Ferrer-Cortès X; Thió M; Navarro-Sastre A; Matalonga L; Quintana E; Bujan N; Arias A; García-Villoria J; Acquaviva C; Vianey-Saban C; Artuch R; García-Cazorla À; Briones P; Ribes A
    Hum Mol Genet; 2014 Apr; 23(7):1907-15. PubMed ID: 24256811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational transitions in the active site of mycobacterial 2-oxoglutarate dehydrogenase upon binding phosphonate analogues of 2-oxoglutarate: From a Michaelis-like complex to ThDP adducts.
    Wagner T; Boyko A; Alzari PM; Bunik VI; Bellinzoni M
    J Struct Biol; 2019 Nov; 208(2):182-190. PubMed ID: 31476368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of loop and beta-turn residues as structural and functional determinants for the lipoyl domain from the Escherichia coli 2-oxoglutarate dehydrogenase complex.
    Jones DD; Perham RN
    Biochem J; 2008 Jan; 409(2):357-66. PubMed ID: 17927566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thiamine preserves mitochondrial function in a rat model of traumatic brain injury, preventing inactivation of the 2-oxoglutarate dehydrogenase complex.
    Mkrtchyan GV; Üçal M; Müllebner A; Dumitrescu S; Kames M; Moldzio R; Molcanyi M; Schaefer S; Weidinger A; Schaefer U; Hescheler J; Duvigneau JC; Redl H; Bunik VI; Kozlov AV
    Biochim Biophys Acta Bioenerg; 2018 Sep; 1859(9):925-931. PubMed ID: 29777685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [2-Oxoglutarate dehydrogenase complex and its multipoint control].
    Tylicki A; Bunik VI; Strumiło S
    Postepy Biochem; 2011; 57(3):304-13. PubMed ID: 22235656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human 2-oxoglutarate dehydrogenase complex E1 component forms a thiamin-derived radical by aerobic oxidation of the enamine intermediate.
    Nemeria NS; Ambrus A; Patel H; Gerfen G; Adam-Vizi V; Tretter L; Zhou J; Wang J; Jordan F
    J Biol Chem; 2014 Oct; 289(43):29859-73. PubMed ID: 25210035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biallelic Mutations in LIPT2 Cause a Mitochondrial Lipoylation Defect Associated with Severe Neonatal Encephalopathy.
    Habarou F; Hamel Y; Haack TB; Feichtinger RG; Lebigot E; Marquardt I; Busiah K; Laroche C; Madrange M; Grisel C; Pontoizeau C; Eisermann M; Boutron A; Chrétien D; Chadefaux-Vekemans B; Barouki R; Bole-Feysot C; Nitschke P; Goudin N; Boddaert N; Nemazanyy I; Delahodde A; Kölker S; Rodenburg RJ; Korenke GC; Meitinger T; Strom TM; Prokisch H; Rotig A; Ottolenghi C; Mayr JA; de Lonlay P
    Am J Hum Genet; 2017 Aug; 101(2):283-290. PubMed ID: 28757203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of the 2-oxoglutarate-dependent dioxygenases and implications for cancer.
    Vissers MC; Kuiper C; Dachs GU
    Biochem Soc Trans; 2014 Aug; 42(4):945-51. PubMed ID: 25109984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium and 2-oxoglutarate-mediated control of aspartate formation by rat heart mitochondria.
    Scaduto RC
    Eur J Biochem; 1994 Aug; 223(3):751-8. PubMed ID: 7914488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Positive correlation between rat brain glutamate concentrations and mitochondrial 2-oxoglutarate dehydrogenase activity.
    Mkrtchyan GV; Graf A; Trofimova L; Ksenofontov A; Baratova L; Bunik V
    Anal Biochem; 2018 Jul; 552():100-109. PubMed ID: 29326069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of calcium ions in the regulation of intramitochondrial metabolism. Effects of Na+, Mg2+ and ruthenium red on the Ca2+-stimulated oxidation of oxoglutarate and on pyruvate dehydrogenase activity in intact rat heart mitochondria.
    Denton RM; McCormack JG; Edgell NJ
    Biochem J; 1980 Jul; 190(1):107-17. PubMed ID: 6160850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.