These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 32792567)
1. De novo transcriptome analysis of Lantana camara L. revealed candidate genes involved in phenylpropanoid biosynthesis pathway. Shah M; Alharby HF; Hakeem KR; Ali N; Rahman IU; Munawar M; Anwar Y Sci Rep; 2020 Aug; 10(1):13726. PubMed ID: 32792567 [TBL] [Abstract][Full Text] [Related]
2. Transcriptome sequencing of medical herb Salvia Rosmarinus (Rosemary) revealed the phenylpropanoid biosynthesis pathway genes and their phylogenetic relationships. Singh D; Mittal N; Mittal P; Siddiqui MH Mol Biol Rep; 2024 Jun; 51(1):757. PubMed ID: 38874856 [TBL] [Abstract][Full Text] [Related]
3. Yerba mate (Ilex paraguariensis, A. St.-Hil.) de novo transcriptome assembly based on tissue specific genomic expression profiles. Fay JV; Watkins CJ; Shrestha RK; Litwiñiuk SL; Talavera Stefani LN; Rojas CA; Argüelles CF; Ferreras JA; Caccamo M; Miretti MM BMC Genomics; 2018 Dec; 19(1):891. PubMed ID: 30526481 [TBL] [Abstract][Full Text] [Related]
4. Comparative transcriptome among Euscaphis konishii Hayata tissues and analysis of genes involved in flavonoid biosynthesis and accumulation. Liang W; Ni L; Carballar-Lejarazú R; Zou X; Sun W; Wu L; Yuan X; Mao Y; Huang W; Zou S BMC Genomics; 2019 Jan; 20(1):24. PubMed ID: 30626333 [TBL] [Abstract][Full Text] [Related]
5. De novo transcriptome of safflower and the identification of putative genes for oleosin and the biosynthesis of flavonoids. Li H; Dong Y; Yang J; Liu X; Wang Y; Yao N; Guan L; Wang N; Wu J; Li X PLoS One; 2012; 7(2):e30987. PubMed ID: 22363528 [TBL] [Abstract][Full Text] [Related]
6. Transcriptome sequence analysis of an ornamental plant, Ananas comosus var. bracteatus, revealed the potential unigenes involved in terpenoid and phenylpropanoid biosynthesis. Ma J; Kanakala S; He Y; Zhang J; Zhong X PLoS One; 2015; 10(3):e0119153. PubMed ID: 25769053 [TBL] [Abstract][Full Text] [Related]
7. De novo assembly and characterization of root transcriptome using Illumina paired-end sequencing and development of cSSR markers in sweet potato (Ipomoea batatas). Wang Z; Fang B; Chen J; Zhang X; Luo Z; Huang L; Chen X; Li Y BMC Genomics; 2010 Dec; 11():726. PubMed ID: 21182800 [TBL] [Abstract][Full Text] [Related]
8. The first insight into the tissue specific taxus transcriptome via Illumina second generation sequencing. Hao da C; Ge G; Xiao P; Zhang Y; Yang L PLoS One; 2011; 6(6):e21220. PubMed ID: 21731678 [TBL] [Abstract][Full Text] [Related]
9. De novo transcriptome analysis of the critically endangered alpine Himalayan herb Nardostachys jatamansi reveals the biosynthesis pathway genes of tissue-specific secondary metabolites. Dhiman N; Kumar A; Kumar D; Bhattacharya A Sci Rep; 2020 Oct; 10(1):17186. PubMed ID: 33057076 [TBL] [Abstract][Full Text] [Related]
10. High-throughput sequencing and de novo transcriptome assembly of Swertia japonica to identify genes involved in the biosynthesis of therapeutic metabolites. Rai A; Nakamura M; Takahashi H; Suzuki H; Saito K; Yamazaki M Plant Cell Rep; 2016 Oct; 35(10):2091-111. PubMed ID: 27378356 [TBL] [Abstract][Full Text] [Related]
11. De novo leaf and root transcriptome analysis to explore biosynthetic pathway of Celangulin V in Celastrus angulatus maxim. Li W; Xu R; Yan X; Liang D; Zhang L; Qin X; Caiyin Q; Zhao G; Xiao W; Hu Z; Qiao J BMC Genomics; 2019 Jan; 20(1):7. PubMed ID: 30611193 [TBL] [Abstract][Full Text] [Related]
12. De novo leaf and root transcriptome analysis identified novel genes involved in steroidal sapogenin biosynthesis in Asparagus racemosus. Upadhyay S; Phukan UJ; Mishra S; Shukla RK BMC Genomics; 2014 Aug; 15(1):746. PubMed ID: 25174837 [TBL] [Abstract][Full Text] [Related]
14. De Novo RNA Sequencing and Expression Analysis of Aconitum carmichaelii to Analyze Key Genes Involved in the Biosynthesis of Diterpene Alkaloids. Rai M; Rai A; Kawano N; Yoshimatsu K; Takahashi H; Suzuki H; Kawahara N; Saito K; Yamazaki M Molecules; 2017 Dec; 22(12):. PubMed ID: 29206203 [No Abstract] [Full Text] [Related]
15. De novo transcriptome sequencing of radish (Raphanus sativus L.) fleshy roots: analysis of major genes involved in the anthocyanin synthesis pathway. Gao J; Li WB; Liu HF; Chen FB BMC Mol Cell Biol; 2019 Oct; 20(1):45. PubMed ID: 31646986 [TBL] [Abstract][Full Text] [Related]
16. De novo assembly, functional annotation and comparative analysis of Withania somnifera leaf and root transcriptomes to identify putative genes involved in the withanolides biosynthesis. Gupta P; Goel R; Pathak S; Srivastava A; Singh SP; Sangwan RS; Asif MH; Trivedi PK PLoS One; 2013; 8(5):e62714. PubMed ID: 23667511 [TBL] [Abstract][Full Text] [Related]
17. De novo assembly and characterization of transcriptome in the medicinal plant Euphorbia jolkini. Roy NS; Lee IH; Kim JA; Ramekar RV; Park KC; Park NI; Yeo JH; Choi IY; Kim S Genes Genomics; 2020 Sep; 42(9):1011-1021. PubMed ID: 32715384 [TBL] [Abstract][Full Text] [Related]
18. Transcriptome analysis to identify key genes involved in terpenoid and rosmarinic acid biosynthesis in lemon balm (Melissa officinalis). Mansouri M; Mohammadi F Gene; 2021 Mar; 773():145417. PubMed ID: 33444679 [TBL] [Abstract][Full Text] [Related]
19. De Novo Transcriptome Analysis of Warburgia ugandensis to Identify Genes Involved in Terpenoids and Unsaturated Fatty Acids Biosynthesis. Wang X; Zhou C; Yang X; Miao D; Zhang Y PLoS One; 2015; 10(8):e0135724. PubMed ID: 26305373 [TBL] [Abstract][Full Text] [Related]
20. De novo characterization of the Lycium chinense Mill. leaf transcriptome and analysis of candidate genes involved in carotenoid biosynthesis. Wang G; Du X; Ji J; Guan C; Li Z; Josine TL Gene; 2015 Jan; 555(2):458-63. PubMed ID: 25445268 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]