These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 32792567)
21. Genome-wide transcriptome variation landscape in Ruta chalepensis organs revealed potential genes responsible for rutin biosynthesis. Abdel-Salam EM; Faisal M; Alatar AA; Qahtan AA; Alam P J Biotechnol; 2021 Jan; 325():43-56. PubMed ID: 33271156 [TBL] [Abstract][Full Text] [Related]
22. Transcriptome profiling of genes involving in carotenoid biosynthesis and accumulation between leaf and root of carrot (Daucus carota L.). Ma J; Li J; Xu Z; Wang F; Xiong A Acta Biochim Biophys Sin (Shanghai); 2018 May; 50(5):481-490. PubMed ID: 29617714 [TBL] [Abstract][Full Text] [Related]
23. De novo transcriptome sequencing of Rhododendron molle and identification of genes involved in the biosynthesis of secondary metabolites. Zhou GL; Zhu P BMC Plant Biol; 2020 Sep; 20(1):414. PubMed ID: 32887550 [TBL] [Abstract][Full Text] [Related]
24. De novo transcriptome and tissue specific expression analysis of genes associated with biosynthesis of secondary metabolites in Operculina turpethum (L.). Biswal B; Jena B; Giri AK; Acharya L Sci Rep; 2021 Nov; 11(1):22539. PubMed ID: 34795371 [TBL] [Abstract][Full Text] [Related]
25. Characterization of the sesame (Sesamum indicum L.) global transcriptome using Illumina paired-end sequencing and development of EST-SSR markers. Wei W; Qi X; Wang L; Zhang Y; Hua W; Li D; Lv H; Zhang X BMC Genomics; 2011 Sep; 12():451. PubMed ID: 21929789 [TBL] [Abstract][Full Text] [Related]
27. De novo sequencing and analysis of the cranberry fruit transcriptome to identify putative genes involved in flavonoid biosynthesis, transport and regulation. Sun H; Liu Y; Gai Y; Geng J; Chen L; Liu H; Kang L; Tian Y; Li Y BMC Genomics; 2015 Sep; 16(1):652. PubMed ID: 26330221 [TBL] [Abstract][Full Text] [Related]
28. Elucidating genes involved in sesquiterpenoid and flavonoid biosynthetic pathways in Saussurea lappa by de novo leaf transcriptome analysis. Bains S; Thakur V; Kaur J; Singh K; Kaur R Genomics; 2019 Dec; 111(6):1474-1482. PubMed ID: 30343181 [TBL] [Abstract][Full Text] [Related]
29. Deep sequencing reveals transcriptome re-programming of Polygonum multiflorum thunb. roots to the elicitation with methyl jasmonate. Liu H; Wu W; Hou K; Chen J; Zhao Z Mol Genet Genomics; 2016 Feb; 291(1):337-48. PubMed ID: 26342927 [TBL] [Abstract][Full Text] [Related]
30. De novo assembly and characterization of bark transcriptome using Illumina sequencing and development of EST-SSR markers in rubber tree (Hevea brasiliensis Muell. Arg.). Li D; Deng Z; Qin B; Liu X; Men Z BMC Genomics; 2012 May; 13():192. PubMed ID: 22607098 [TBL] [Abstract][Full Text] [Related]
31. Transcriptome analysis of the roots at early and late seedling stages using Illumina paired-end sequencing and development of EST-SSR markers in radish. Wang S; Wang X; He Q; Liu X; Xu W; Li L; Gao J; Wang F Plant Cell Rep; 2012 Aug; 31(8):1437-47. PubMed ID: 22476438 [TBL] [Abstract][Full Text] [Related]
32. De novo transcriptome analysis of Justicia adhatoda reveals candidate genes involved in major biosynthetic pathway. Padmanabhan D; Lateef A; Natarajan P; Palanisamy S Mol Biol Rep; 2022 Nov; 49(11):10307-10314. PubMed ID: 36097107 [TBL] [Abstract][Full Text] [Related]
33. Next-generation sequencing (NGS) transcriptomes reveal association of multiple genes and pathways contributing to secondary metabolites accumulation in tuberous roots of Aconitum heterophyllum Wall. Pal T; Malhotra N; Chanumolu SK; Chauhan RS Planta; 2015 Jul; 242(1):239-58. PubMed ID: 25904478 [TBL] [Abstract][Full Text] [Related]
34. RNA sequencing and de novo assembly of Solanum trilobatum leaf transcriptome to identify putative transcripts for major metabolic pathways. Lateef A; Prabhudas SK; Natarajan P Sci Rep; 2018 Oct; 8(1):15375. PubMed ID: 30337583 [TBL] [Abstract][Full Text] [Related]
35. De Novo Transcriptome Assembly and Characterization of Lithospermum officinale to Discover Putative Genes Involved in Specialized Metabolites Biosynthesis. Rai A; Nakaya T; Shimizu Y; Rai M; Nakamura M; Suzuki H; Saito K; Yamazaki M Planta Med; 2018 Aug; 84(12-13):920-934. PubMed ID: 29843181 [No Abstract] [Full Text] [Related]
36. De novo sequencing, assembly and characterisation of Aloe vera transcriptome and analysis of expression profiles of genes related to saponin and anthraquinone metabolism. Choudhri P; Rani M; Sangwan RS; Kumar R; Kumar A; Chhokar V BMC Genomics; 2018 Jun; 19(1):427. PubMed ID: 29859051 [TBL] [Abstract][Full Text] [Related]
37. Transcriptional profiling of catechins biosynthesis genes during tea plant leaf development. Guo F; Guo Y; Wang P; Wang Y; Ni D Planta; 2017 Dec; 246(6):1139-1152. PubMed ID: 28825226 [TBL] [Abstract][Full Text] [Related]
38. Transcriptome sequencing and characterization of Astragalus membranaceus var. mongholicus root reveals key genes involved in flavonoids biosynthesis. Liang J; Li W; Jia X; Zhang Y; Zhao J Genes Genomics; 2020 Aug; 42(8):901-914. PubMed ID: 32519170 [TBL] [Abstract][Full Text] [Related]
39. De novo transcriptome sequencing in Pueraria lobata to identify putative genes involved in isoflavones biosynthesis. Wang X; Li S; Li J; Li C; Zhang Y Plant Cell Rep; 2015 May; 34(5):733-43. PubMed ID: 25547742 [TBL] [Abstract][Full Text] [Related]
40. Transcriptome analysis of Lantana camara flower petals reveals candidate anthocyanin biosynthesis genes mediating red flower color development. Parrish SB; Paudel D; Deng Z G3 (Bethesda); 2023 Dec; 14(1):. PubMed ID: 37974306 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]