BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 32793224)

  • 1. Large-Scale Structure-Based Prediction of Stable Peptide Binding to Class I HLAs Using Random Forests.
    Abella JR; Antunes DA; Clementi C; Kavraki LE
    Front Immunol; 2020; 11():1583. PubMed ID: 32793224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating peptides' sequence and energy of contact residues information improves prediction of peptide and HLA-I binding with unknown alleles.
    Luo F; Gao Y; Zhu Y; Liu J
    BMC Bioinformatics; 2013; 14 Suppl 8(Suppl 8):S1. PubMed ID: 23815611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DynaPred: a structure and sequence based method for the prediction of MHC class I binding peptide sequences and conformations.
    Antes I; Siu SW; Lengauer T
    Bioinformatics; 2006 Jul; 22(14):e16-24. PubMed ID: 16873467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subangstrom accuracy in pHLA-I modeling by Rosetta FlexPepDock refinement protocol.
    Liu T; Pan X; Chao L; Tan W; Qu S; Yang L; Wang B; Mei H
    J Chem Inf Model; 2014 Aug; 54(8):2233-42. PubMed ID: 25050981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DeepSeqPan, a novel deep convolutional neural network model for pan-specific class I HLA-peptide binding affinity prediction.
    Liu Z; Cui Y; Xiong Z; Nasiri A; Zhang A; Hu J
    Sci Rep; 2019 Jan; 9(1):794. PubMed ID: 30692623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning MHC I--peptide binding.
    Jojic N; Reyes-Gomez M; Heckerman D; Kadie C; Schueler-Furman O
    Bioinformatics; 2006 Jul; 22(14):e227-35. PubMed ID: 16873476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward the prediction of class I and II mouse major histocompatibility complex-peptide-binding affinity: in silico bioinformatic step-by-step guide using quantitative structure-activity relationships.
    Hattotuwagama CK; Doytchinova IA; Flower DR
    Methods Mol Biol; 2007; 409():227-45. PubMed ID: 18450004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of peptide binding to MHC using machine learning with sequence and structure-based feature sets.
    Aranha MP; Spooner C; Demerdash O; Czejdo B; Smith JC; Mitchell JC
    Biochim Biophys Acta Gen Subj; 2020 Apr; 1864(4):129535. PubMed ID: 31954798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. APEX-pHLA: A novel method for accurate prediction of the binding between exogenous short peptides and HLA class I molecules.
    Su Z; Wu Y; Cao K; Du J; Cao L; Wu Z; Wu X; Wang X; Song Y; Wang X; Duan H
    Methods; 2024 Aug; 228():38-47. PubMed ID: 38772499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MultiRTA: a simple yet reliable method for predicting peptide binding affinities for multiple class II MHC allotypes.
    Bordner AJ; Mittelmann HD
    BMC Bioinformatics; 2010 Sep; 11():482. PubMed ID: 20868497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep convolutional neural networks for pan-specific peptide-MHC class I binding prediction.
    Han Y; Kim D
    BMC Bioinformatics; 2017 Dec; 18(1):585. PubMed ID: 29281985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peptide-dependent conformational fluctuation determines the stability of the human leukocyte antigen class I complex.
    Yanaka S; Ueno T; Shi Y; Qi J; Gao GF; Tsumoto K; Sugase K
    J Biol Chem; 2014 Aug; 289(35):24680-90. PubMed ID: 25028510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting peptide presentation by major histocompatibility complex class I: an improved machine learning approach to the immunopeptidome.
    Boehm KM; Bhinder B; Raja VJ; Dephoure N; Elemento O
    BMC Bioinformatics; 2019 Jan; 20(1):7. PubMed ID: 30611210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. APE-Gen: A Fast Method for Generating Ensembles of Bound Peptide-MHC Conformations.
    Abella JR; Antunes DA; Clementi C; Kavraki LE
    Molecules; 2019 Mar; 24(5):. PubMed ID: 30832312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pocketcheck: updating the HLA class I peptide specificity roadmap.
    Huyton T; Ladas N; Schumacher H; Blasczyk R; Bade-Doeding C
    Tissue Antigens; 2012 Sep; 80(3):239-48. PubMed ID: 22803829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deciphering complex patterns of class-I HLA-peptide cross-reactivity via hierarchical grouping.
    Mukherjee S; Warwicker J; Chandra N
    Immunol Cell Biol; 2015 Jul; 93(6):522-32. PubMed ID: 25708537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural prediction of peptides binding to MHC class I molecules.
    Bui HH; Schiewe AJ; von Grafenstein H; Haworth IS
    Proteins; 2006 Apr; 63(1):43-52. PubMed ID: 16447245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RBM-MHC: A Semi-Supervised Machine-Learning Method for Sample-Specific Prediction of Antigen Presentation by HLA-I Alleles.
    Bravi B; Tubiana J; Cocco S; Monasson R; Mora T; Walczak AM
    Cell Syst; 2021 Feb; 12(2):195-202.e9. PubMed ID: 33338400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systematically benchmarking peptide-MHC binding predictors: From synthetic to naturally processed epitopes.
    Zhao W; Sher X
    PLoS Comput Biol; 2018 Nov; 14(11):e1006457. PubMed ID: 30408041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and validation of an epitope prediction tool for swine (PigMatrix) based on the pocket profile method.
    GutiƩrrez AH; Martin WD; Bailey-Kellogg C; Terry F; Moise L; De Groot AS
    BMC Bioinformatics; 2015 Sep; 16():290. PubMed ID: 26370412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.