BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 32793303)

  • 1. A new synergistic relationship between xylan-active LPMO and xylobiohydrolase to tackle recalcitrant xylan.
    Zerva A; Pentari C; Grisel S; Berrin JG; Topakas E
    Biotechnol Biofuels; 2020; 13():142. PubMed ID: 32793303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel fungal GH30 xylanase with xylobiohydrolase auxiliary activity.
    Katsimpouras C; Dedes G; Thomaidis NS; Topakas E
    Biotechnol Biofuels; 2019; 12():120. PubMed ID: 31110561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel AA14 LPMO from Talaromyces rugulosus with bifunctional cellulolytic/hemicellulolytic activity boosted cellulose hydrolysis.
    Chen K; Zhao X; Zhang P; Long L; Ding S
    Biotechnol Biofuels Bioprod; 2024 Feb; 17(1):30. PubMed ID: 38395898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The xylobiohydrolase activity of a GH30 xylanase on natively acetylated xylan may hold the key for the degradation of recalcitrant xylan.
    Pentari C; Zerva A; Dimarogona M; Topakas E
    Carbohydr Polym; 2023 Apr; 305():120527. PubMed ID: 36737185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of Six Lytic Polysaccharide Monooxygenases from
    Tõlgo M; Hegnar OA; Østby H; Várnai A; Vilaplana F; Eijsink VGH; Olsson L
    Appl Environ Microbiol; 2022 Mar; 88(6):e0009622. PubMed ID: 35080911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantifying Oxidation of Cellulose-Associated Glucuronoxylan by Two Lytic Polysaccharide Monooxygenases from Neurospora crassa.
    Hegnar OA; Østby H; Petrović DM; Olsson L; Várnai A; Eijsink VGH
    Appl Environ Microbiol; 2021 Nov; 87(24):e0165221. PubMed ID: 34613755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Yeast GH30 Xylanase from
    Šuchová K; Chyba A; Hegyi Z; Rebroš M; Puchart V
    Molecules; 2022 Jan; 27(3):. PubMed ID: 35164030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergistic Action of a Lytic Polysaccharide Monooxygenase and a Cellobiohydrolase from
    Ogunyewo OA; Randhawa A; Gupta M; Kaladhar VC; Verma PK; Yazdani SS
    Appl Environ Microbiol; 2020 Nov; 86(23):. PubMed ID: 32978122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymatic debranching is a key determinant of the xylan-degrading activity of family AA9 lytic polysaccharide monooxygenases.
    Tõlgo M; Hegnar OA; Larsbrink J; Vilaplana F; Eijsink VGH; Olsson L
    Biotechnol Biofuels Bioprod; 2023 Jan; 16(1):2. PubMed ID: 36604763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assembly of xylanases into designer cellulosomes promotes efficient hydrolysis of the xylan component of a natural recalcitrant cellulosic substrate.
    Moraïs S; Barak Y; Hadar Y; Wilson DB; Shoham Y; Lamed R; Bayer EA
    mBio; 2011; 2(6):. PubMed ID: 22086489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel GH30 xylobiohydrolase from Acremonium alcalophilum releasing xylobiose from the non-reducing end.
    Šuchová K; Puchart V; Spodsberg N; Mørkeberg Krogh KBR; Biely P
    Enzyme Microb Technol; 2020 Mar; 134():109484. PubMed ID: 32044031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect?
    Hu J; Arantes V; Saddler JN
    Biotechnol Biofuels; 2011 Oct; 4():36. PubMed ID: 21974832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of an oligosaccharide reducing-end xylanase, BhRex8A, on the synergistic degradation of xylan backbones by an optimised xylanolytic enzyme cocktail.
    Malgas S; Pletschke BI
    Enzyme Microb Technol; 2019 Mar; 122():74-81. PubMed ID: 30638511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GH30 Glucuronoxylan-Specific Xylanase from Streptomyces turgidiscabies C56.
    Maehara T; Yagi H; Sato T; Ohnishi-Kameyama M; Fujimoto Z; Kamino K; Kitamura Y; St John F; Yaoi K; Kaneko S
    Appl Environ Microbiol; 2018 Feb; 84(4):. PubMed ID: 29180367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GH30-7 Endoxylanase C from the Filamentous Fungus
    Nakamichi Y; Fujii T; Fouquet T; Matsushika A; Inoue H
    Appl Environ Microbiol; 2019 Nov; 85(22):. PubMed ID: 31492671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Revisiting the AA14 family of lytic polysaccharide monooxygenases and their catalytic activity.
    Tuveng TR; Østby H; Tamburrini KC; Bissaro B; Hegnar OA; Stepnov AA; Várnai A; Berrin JG; Eijsink VGH
    FEBS Lett; 2023 Aug; 597(16):2086-2102. PubMed ID: 37418595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of a family 1 carbohydrate-binding module in thermostable glycoside hydrolase 10 xylanase from Talaromyces cellulolyticus toward synergistic enzymatic hydrolysis of lignocellulose.
    Inoue H; Kishishita S; Kumagai A; Kataoka M; Fujii T; Ishikawa K
    Biotechnol Biofuels; 2015; 8():77. PubMed ID: 26000036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expressing accessory proteins in cellulolytic
    Guo ZP; Duquesne S; Bozonnet S; Nicaud JM; Marty A; O'Donohue MJ
    Biotechnol Biofuels; 2017; 10():298. PubMed ID: 29238402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of acetyl xylan esterase in the solubilization of xylan and enzymatic hydrolysis of wheat straw and giant reed.
    Zhang J; Siika-Aho M; Tenkanen M; Viikari L
    Biotechnol Biofuels; 2011 Dec; 4(1):60. PubMed ID: 22185437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discovery of the combined oxidative cleavage of plant xylan and cellulose by a new fungal polysaccharide monooxygenase.
    Frommhagen M; Sforza S; Westphal AH; Visser J; Hinz SW; Koetsier MJ; van Berkel WJ; Gruppen H; Kabel MA
    Biotechnol Biofuels; 2015; 8():101. PubMed ID: 26185526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.