BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 32794133)

  • 1. Redox status regulates subcelluar localization of PpTGA1 associated with a BABA-induced priming defence against Rhizopus rot in peach fruit.
    Li C; Wang K; Zheng Y
    Mol Biol Rep; 2020 Sep; 47(9):6657-6668. PubMed ID: 32794133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of the BABA-induced priming defence through redox homeostasis and the modules of TGA1 and MAPKK5 in postharvest peach fruit.
    Li C; Wang K; Huang Y; Lei C; Cao S; Qiu L; Xu F; Jiang Y; Zou Y; Zheng Y
    Mol Plant Pathol; 2021 Dec; 22(12):1624-1640. PubMed ID: 34498365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. β-aminobutyric acid induces priming defence against Botrytis cinerea in grapefruit by reducing intercellular redox status that modifies posttranslation of VvNPR1 and its interaction with VvTGA1.
    Wang K; Li C; Lei C; Jiang Y; Qiu L; Zou X; Zheng Y
    Plant Physiol Biochem; 2020 Nov; 156():552-565. PubMed ID: 33059266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carvacrol and eugenol effectively inhibit Rhizopus stolonifer and control postharvest soft rot decay in peaches.
    Zhou D; Wang Z; Li M; Xing M; Xian T; Tu K
    J Appl Microbiol; 2018 Jan; 124(1):166-178. PubMed ID: 29044849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MADS2 regulates priming defence in postharvest peach through combined salicylic acid and abscisic acid signaling.
    Li C; Lei C; Wang K; Tan M; Xu F; Wang J; Zheng Y
    J Exp Bot; 2022 Jun; 73(11):3787-3806. PubMed ID: 35266534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of β-Aminobutyric Acid on Disease Resistance Against
    Wang J; Cao S; Wang L; Wang X; Jin P; Zheng Y
    Front Microbiol; 2018; 9():1505. PubMed ID: 30042749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacillus cereus AR156 induces resistance against Rhizopus rot through priming of defense responses in peach fruit.
    Wang X; Xu F; Wang J; Jin P; Zheng Y
    Food Chem; 2013 Jan; 136(2):400-6. PubMed ID: 23122077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PpMYB1 and PpNPR1 interact to enhance the resistance of peach fruit to Rhizopus stolonifer infection.
    Li Y; Zuo X; Ji N; Zhang J; Wang K; Jin P; Zheng Y
    Plant Physiol Biochem; 2023 May; 198():107682. PubMed ID: 37060868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigating the efficacy of Bacillus subtilis SM21 on controlling Rhizopus rot in peach fruit.
    Wang X; Wang J; Jin P; Zheng Y
    Int J Food Microbiol; 2013 Jun; 164(2-3):141-7. PubMed ID: 23673059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antifungal activity screening for mint and thyme essential oils against Rhizopus stolonifer and their application in postharvest preservation of strawberry and peach fruits.
    Yan J; Wu H; Shi F; Wang H; Chen K; Feng J; Jia W
    J Appl Microbiol; 2021 Jun; 130(6):1993-2007. PubMed ID: 33190384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chlorogenic acid induces resistance against Penicillium expansum in peach fruit by activating the salicylic acid signaling pathway.
    Jiao W; Li X; Wang X; Cao J; Jiang W
    Food Chem; 2018 Sep; 260():274-282. PubMed ID: 29699670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomic analysis of elicitation of downy mildew disease resistance in pearl millet by seed priming with β-aminobutyric acid and Pseudomonas fluorescens.
    Anup CP; Melvin P; Shilpa N; Gandhi MN; Jadhav M; Ali H; Kini KR
    J Proteomics; 2015 Apr; 120():58-74. PubMed ID: 25746381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a novel 1-octen-3-ol-loaded agar/curdlan hydrogel for inhibiting peach fruit diseases.
    Wang X; Dai M; Peng Y; Huang M; Han X; Cao J; Qiao J; Song Z; Shi J
    Int J Biol Macromol; 2023 Nov; 251():126411. PubMed ID: 37598819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of indole-3-carboxylic acid as mediator of priming against Plectosphaerella cucumerina.
    Gamir J; Pastor V; Cerezo M; Flors V
    Plant Physiol Biochem; 2012 Dec; 61():169-79. PubMed ID: 23116603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of hot air treatment in combination with Pichia guilliermondii on postharvest preservation of peach fruit.
    Zhao Y; Li Y; Yin J
    J Sci Food Agric; 2019 Jan; 99(2):647-655. PubMed ID: 29962027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antifungal activity and mechanism of tea polyphenols against Rhizopus stolonifer.
    Yang X; Jiang X
    Biotechnol Lett; 2015 Jul; 37(7):1463-72. PubMed ID: 26003094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. β-aminobutyric acid mediated drought stress alleviation in maize (Zea mays L.).
    Shaw AK; Bhardwaj PK; Ghosh S; Roy S; Saha S; Sherpa AR; Saha SK; Hossain Z
    Environ Sci Pollut Res Int; 2016 Feb; 23(3):2437-53. PubMed ID: 26416125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study on the control effect and physiological mechanism of Wickerhamomyces anomalus on primary postharvest diseases of peach fruit.
    Zhou Y; Zhao L; Chen Y; Dhanasekaran S; Chen X; Zhang X; Yang X; Wu M; Song Y; Zhang H
    Int J Food Microbiol; 2024 Mar; 413():110575. PubMed ID: 38244385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of postharvest oligochitosan treatment on fungal diseases and defence responses in Dongxue peach fruit.
    Chen C; Hu W; Zhang R; Jiang A
    Food Sci Technol Int; 2018 Mar; 24(2):161-171. PubMed ID: 29084489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induction of Direct or Priming Resistance against Botrytis cinerea in Strawberries by β-Aminobutyric Acid and Their Effects on Sucrose Metabolism.
    Wang K; Liao Y; Xiong Q; Kan J; Cao S; Zheng Y
    J Agric Food Chem; 2016 Jul; 64(29):5855-65. PubMed ID: 27368357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.