These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 32794349)

  • 1. Mechanics Design in Cellulose-Enabled High-Performance Functional Materials.
    Ray U; Zhu S; Pang Z; Li T
    Adv Mater; 2021 Jul; 33(28):e2002504. PubMed ID: 32794349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tough and Moldable Sustainable Cellulose-Based Structural Materials via Multiscale Interface Engineering.
    Yue X; Yang HB; Han ZM; Lu YX; Yin CH; Zhao X; Liu ZX; Guan QF; Yu SH
    Adv Mater; 2024 Feb; 36(7):e2306451. PubMed ID: 37878793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications.
    Zhu H; Luo W; Ciesielski PN; Fang Z; Zhu JY; Henriksson G; Himmel ME; Hu L
    Chem Rev; 2016 Aug; 116(16):9305-74. PubMed ID: 27459699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Structural Origins of Wood Cell Wall Toughness.
    Maaß MC; Saleh S; Militz H; Volkert CA
    Adv Mater; 2020 Apr; 32(16):e1907693. PubMed ID: 32115772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite Element Analysis of Strengthening Mechanism of Ultrastrong and Tough Cellulosic Materials.
    Han X; Wang J; Wang X; Tian W; Dong Y; Jiang S
    Polymers (Basel); 2022 Oct; 14(21):. PubMed ID: 36365485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural reconstruction strategies for the design of cellulose nanomaterials and aligned wood cellulose-based functional materials - A review.
    Zhu Z; Fu S; Lavoine N; Lucia LA
    Carbohydr Polym; 2020 Nov; 247():116722. PubMed ID: 32829846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anomalous scaling law of strength and toughness of cellulose nanopaper.
    Zhu H; Zhu S; Jia Z; Parvinian S; Li Y; Vaaland O; Hu L; Li T
    Proc Natl Acad Sci U S A; 2015 Jul; 112(29):8971-6. PubMed ID: 26150482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and characterization of nano fibrillated cellulose/Cu
    Sabbaghan M; Argyropoulos DS
    Carbohydr Polym; 2018 Oct; 197():614-622. PubMed ID: 30007654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lightweight, tough, and sustainable cellulose nanofiber-derived bulk structural materials with low thermal expansion coefficient.
    Guan QF; Yang HB; Han ZM; Zhou LC; Zhu YB; Ling ZC; Jiang HB; Wang PF; Ma T; Wu HA; Yu SH
    Sci Adv; 2020 May; 6(18):eaaz1114. PubMed ID: 32494670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiscale Control of Nanocellulose Assembly: Transferring Remarkable Nanoscale Fibril Mechanics to Macroscale Fibers.
    Mittal N; Ansari F; Gowda V K; Brouzet C; Chen P; Larsson PT; Roth SV; Lundell F; Wågberg L; Kotov NA; Söderberg LD
    ACS Nano; 2018 Jul; 12(7):6378-6388. PubMed ID: 29741364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regenerated isotropic wood.
    Guan QF; Han ZM; Yang HB; Ling ZC; Yu SH
    Natl Sci Rev; 2021 Jul; 8(7):nwaa230. PubMed ID: 34691687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellulose long fibers fabricated from cellulose nanofibers and its strong and tough characteristics.
    Kafy A; Kim HC; Zhai L; Kim JW; Hai LV; Kang TJ; Kim J
    Sci Rep; 2017 Dec; 7(1):17683. PubMed ID: 29247191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiscale experimental mechanics of hierarchical carbon-based materials.
    Espinosa HD; Filleter T; Naraghi M
    Adv Mater; 2012 Jun; 24(21):2805-23. PubMed ID: 22576263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eco-Friendly Methods for Extraction and Modification of Cellulose: An Overview.
    Magalhães S; Fernandes C; Pedrosa JFS; Alves L; Medronho B; Ferreira PJT; Rasteiro MDG
    Polymers (Basel); 2023 Jul; 15(14):. PubMed ID: 37514527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drying of the Natural Fibers as A Solvent-Free Way to Improve the Cellulose-Filled Polymer Composite Performance.
    Cichosz S; Masek A
    Polymers (Basel); 2020 Feb; 12(2):. PubMed ID: 32098150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogen Bond Dynamics of Cellulose through Inelastic Neutron Scattering Spectroscopy.
    Araujo C; Freire CSR; Nolasco MM; Ribeiro-Claro PJA; Rudić S; Silvestre AJD; Vaz PD
    Biomacromolecules; 2018 Apr; 19(4):1305-1313. PubMed ID: 29565567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Advances in Functional Materials through Cellulose Nanofiber Templating.
    Lamm ME; Li K; Qian J; Wang L; Lavoine N; Newman R; Gardner DJ; Li T; Hu L; Ragauskas AJ; Tekinalp H; Kunc V; Ozcan S
    Adv Mater; 2021 Mar; 33(12):e2005538. PubMed ID: 33565173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioinspired, Multiscale Reinforced Composites with Exceptionally High Strength and Toughness.
    Song N; Zhang Y; Gao Z; Li X
    Nano Lett; 2018 Sep; 18(9):5812-5820. PubMed ID: 30088938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advanced Materials through Assembly of Nanocelluloses.
    Kontturi E; Laaksonen P; Linder MB; Nonappa ; Gröschel AH; Rojas OJ; Ikkala O
    Adv Mater; 2018 Jun; 30(24):e1703779. PubMed ID: 29504161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The weak interfaces within tough natural composites: experiments on three types of nacre.
    Khayer Dastjerdi A; Rabiei R; Barthelat F
    J Mech Behav Biomed Mater; 2013 Mar; 19():50-60. PubMed ID: 23084045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.