These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 32794376)

  • 1. Preparation and Utilization of Jute-Derived Carbon: A Short Review.
    Aziz A; Shah SS; Kashem A
    Chem Rec; 2020 Sep; 20(9):1074-1098. PubMed ID: 32794376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Present Status and Future Prospects of Jute in Nanotechnology: A Review.
    Shah SS; Shaikh MN; Khan MY; Alfasane MA; Rahman MM; Aziz MA
    Chem Rec; 2021 Jul; 21(7):1631-1665. PubMed ID: 34132038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous extraction of lignin and cellulose nanofibrils from waste jute bags using one pot pre-treatment.
    Ahuja D; Kaushik A; Singh M
    Int J Biol Macromol; 2018 Feb; 107(Pt A):1294-1301. PubMed ID: 28964841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications.
    Zhu H; Luo W; Ciesielski PN; Fang Z; Zhu JY; Henriksson G; Himmel ME; Hu L
    Chem Rev; 2016 Aug; 116(16):9305-74. PubMed ID: 27459699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From farm to function: Exploring new possibilities with jute nanocellulose applications.
    Farooq A; Islam SR; Al-Amin M; Patoary MK; Hossain MT; Khawar MT; Wang Z; Tian M
    Carbohydr Polym; 2024 Oct; 342():122423. PubMed ID: 39048207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative Insights into the Fast Pyrolysis of Extracted Cellulose, Hemicelluloses, and Lignin.
    Carrier M; Windt M; Ziegler B; Appelt J; Saake B; Meier D; Bridgwater A
    ChemSusChem; 2017 Aug; 10(16):3212-3224. PubMed ID: 28644517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel Lignin-Cellulose-Based Carbon Nanofibers as High-Performance Supercapacitors.
    Cao Q; Zhu M; Chen J; Song Y; Li Y; Zhou J
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):1210-1221. PubMed ID: 31845573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon Materials from Technical Lignins: Recent Advances.
    Puziy AM; Poddubnaya OI; Sevastyanova O
    Top Curr Chem (Cham); 2018 Jul; 376(4):33. PubMed ID: 29995273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical and structural evaluation of activated carbon prepared from jute sticks for Brilliant Green dye removal from aqueous solution.
    Asadullah M; Asaduzzaman M; Kabir MS; Mostofa MG; Miyazawa T
    J Hazard Mater; 2010 Feb; 174(1-3):437-43. PubMed ID: 19815339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellulose: A review as natural, modified and activated carbon adsorbent.
    Suhas ; Gupta VK; Carrott PJ; Singh R; Chaudhary M; Kushwaha S
    Bioresour Technol; 2016 Sep; 216():1066-76. PubMed ID: 27265088
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Zhou S; Nyholm L; Strømme M; Wang Z
    Acc Chem Res; 2019 Aug; 52(8):2232-2243. PubMed ID: 31290643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial Cellulose: A Robust Platform for Design of Three Dimensional Carbon-Based Functional Nanomaterials.
    Wu ZY; Liang HW; Chen LF; Hu BC; Yu SH
    Acc Chem Res; 2016 Jan; 49(1):96-105. PubMed ID: 26642085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal decomposition of castor oil, corn starch, soy protein, lignin, xylan, and cellulose during fast pyrolysis.
    Qiao Y; Wang B; Ji Y; Xu F; Zong P; Zhang J; Tian Y
    Bioresour Technol; 2019 Apr; 278():287-295. PubMed ID: 30708332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly porous carboxylated activated carbon from jute stick for removal of Pb
    Aziz MA; Chowdhury IR; Mazumder MAJ; Chowdhury S
    Environ Sci Pollut Res Int; 2019 Aug; 26(22):22656-22669. PubMed ID: 31168714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of carbons derived from cellulose and lignin and their oxidative behavior.
    Xie X; Goodell B; Zhang D; Nagle DC; Qian Y; Peterson ML; Jellison J
    Bioresour Technol; 2009 Mar; 100(5):1797-802. PubMed ID: 19027291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of calcium dihydrogen phosphate addition on carbon retention and stability of biochars derived from cellulose, hemicellulose, and lignin.
    Li F; Gui X; Ji W; Zhou C
    Chemosphere; 2020 Jul; 251():126335. PubMed ID: 32145573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of thermochemical treatments on the lignocellulosic structure of wheat straw as studied by natural abundance 13C NMR.
    Habets S; de Wild PJ; Huijgen WJJ; van Eck ERH
    Bioresour Technol; 2013 Oct; 146():585-590. PubMed ID: 23973979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics modeling of dynamic pyrolysis of bagasse fibers.
    Sun L; Chen JY; Negulescu II; Moore MA; Collier BJ
    Bioresour Technol; 2011 Jan; 102(2):1951-8. PubMed ID: 20855203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast microwave-assisted preparation of a low-cost and recyclable carboxyl modified lignocellulose-biomass jute fiber for enhanced heavy metal removal from water.
    Du Z; Zheng T; Wang P; Hao L; Wang Y
    Bioresour Technol; 2016 Feb; 201():41-9. PubMed ID: 26630582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Low-Temperature Pyrolysis on the Properties of Jute Fiber-Reinforced Acetylated Softwood Kraft Lignin-Based Thermoplastic Polyurethane.
    Roh HG; Kim S; Lee J; Park J
    Polymers (Basel); 2018 Dec; 10(12):. PubMed ID: 30961263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.