These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 32794710)

  • 1. Machine Learning Models of Antibody-Excipient Preferential Interactions for Use in Computational Formulation Design.
    Cloutier TK; Sudrik C; Mody N; Sathish HA; Trout BL
    Mol Pharm; 2020 Sep; 17(9):3589-3599. PubMed ID: 32794710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular computations of preferential interactions of proline, arginine.HCl, and NaCl with IgG1 antibodies and their impact on aggregation and viscosity.
    Cloutier TK; Sudrik C; Mody N; Hasige SA; Trout BL
    MAbs; 2020; 12(1):1816312. PubMed ID: 32938318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Computations of Preferential Interaction Coefficients of IgG1 Monoclonal Antibodies with Sorbitol, Sucrose, and Trehalose and the Impact of These Excipients on Aggregation and Viscosity.
    Cloutier T; Sudrik C; Mody N; Sathish HA; Trout BL
    Mol Pharm; 2019 Aug; 16(8):3657-3664. PubMed ID: 31276620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational Characterization of Antibody-Excipient Interactions for Rational Excipient Selection Using the Site Identification by Ligand Competitive Saturation-Biologics Approach.
    Jo S; Xu A; Curtis JE; Somani S; MacKerell AD
    Mol Pharm; 2020 Nov; 17(11):4323-4333. PubMed ID: 32965126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preferential interactions of trehalose, L-arginine.HCl and sodium chloride with therapeutically relevant IgG1 monoclonal antibodies.
    Sudrik C; Cloutier T; Pham P; Samra HS; Trout BL
    MAbs; 2017 Oct; 9(7):1155-1168. PubMed ID: 28758834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bilateral Effects of Excipients on Protein Stability: Preferential Interaction Type of Excipient and Surface Aromatic Hydrophobicity of Protein.
    Wen L; Zheng X; Wang X; Lan H; Yin Z
    Pharm Res; 2017 Jul; 34(7):1378-1390. PubMed ID: 28401430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding the Role of Preferential Exclusion of Sugars and Polyols from Native State IgG1 Monoclonal Antibodies and its Effect on Aggregation and Reversible Self-Association.
    Sudrik CM; Cloutier T; Mody N; Sathish HA; Trout BL
    Pharm Res; 2019 May; 36(8):109. PubMed ID: 31127417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suppression of Electrostatic Mediated Antibody Liquid-Liquid Phase Separation by Charged and Noncharged Preferentially Excluded Excipients.
    Banks DD; Cordia JF
    Mol Pharm; 2021 Mar; 18(3):1285-1292. PubMed ID: 33555888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of the Hydration Water Around Monoclonal Antibodies on Addition of Excipients Detected by Terahertz Time-Domain Spectroscopy.
    Wallace VP; Ferachou D; Ke P; Day K; Uddin S; Casas-Finet J; Van Der Walle CF; Falconer RJ; Zeitler JA
    J Pharm Sci; 2015 Dec; 104(12):4025-4033. PubMed ID: 26344202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studying Excipient Modulated Physical Stability and Viscosity of Monoclonal Antibody Formulations Using Small-Angle Scattering.
    Xu AY; Castellanos MM; Mattison K; Krueger S; Curtis JE
    Mol Pharm; 2019 Oct; 16(10):4319-4338. PubMed ID: 31487466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Freeze-Drying of L-Arginine/Sucrose-Based Protein Formulations, Part 2: Optimization of Formulation Design and Freeze-Drying Process Conditions for an L-Arginine Chloride-Based Protein Formulation System.
    Stärtzel P; Gieseler H; Gieseler M; Abdul-Fattah AM; Adler M; Mahler HC; Goldbach P
    J Pharm Sci; 2015 Dec; 104(12):4241-4256. PubMed ID: 26422647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein-protein interactions and water activity coefficients can be used to aid a first excipient choice in protein formulations.
    Schleinitz M; Sadowski G; Brandenbusch C
    Int J Pharm; 2019 Oct; 569():118608. PubMed ID: 31415881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding of excipients is a poor predictor for aggregation kinetics of biopharmaceutical proteins.
    Zalar M; Svilenov HL; Golovanov AP
    Eur J Pharm Biopharm; 2020 Jun; 151():127-136. PubMed ID: 32283214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Histidine and Sucrose on the Biophysical Properties of a Monoclonal Antibody.
    Baek Y; Singh N; Arunkumar A; Zydney AL
    Pharm Res; 2017 Mar; 34(3):629-639. PubMed ID: 28035628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Significant Drying Time Reduction Using Microwave-Assisted Freeze-Drying for a Monoclonal Antibody.
    Gitter JH; Geidobler R; Presser I; Winter G
    J Pharm Sci; 2018 Oct; 107(10):2538-2543. PubMed ID: 29890173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Excipients differentially influence the conformational stability and pretransition dynamics of two IgG1 monoclonal antibodies.
    Thakkar SV; Joshi SB; Jones ME; Sathish HA; Bishop SM; Volkin DB; Middaugh CR
    J Pharm Sci; 2012 Sep; 101(9):3062-77. PubMed ID: 22581714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quality by design: impact of formulation variables and their interactions on quality attributes of a lyophilized monoclonal antibody.
    Awotwe-Otoo D; Agarabi C; Wu GK; Casey E; Read E; Lute S; Brorson KA; Khan MA; Shah RB
    Int J Pharm; 2012 Nov; 438(1-2):167-75. PubMed ID: 22944306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simplified choice of suitable excipients within biologics formulation design using protein-protein interaction- and water activity-maps.
    Stolzke T; Brandenbusch C
    Eur J Pharm Biopharm; 2022 Jul; 176():153-167. PubMed ID: 35643368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The surface characterisation and comparison of two potential sub-micron, sugar bulking excipients for use in low-dose, suspension formulations in metered dose inhalers.
    James J; Crean B; Davies M; Toon R; Jinks P; Roberts CJ
    Int J Pharm; 2008 Sep; 361(1-2):209-21. PubMed ID: 18577435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Viscosity-Lowering Effect of Amino Acids and Salts on Highly Concentrated Solutions of Two IgG1 Monoclonal Antibodies.
    Wang S; Zhang N; Hu T; Dai W; Feng X; Zhang X; Qian F
    Mol Pharm; 2015 Dec; 12(12):4478-87. PubMed ID: 26528726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.