These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 32794929)
21. Geometry and mechanics of disclination lines in 3D nematic liquid crystals. Long C; Tang X; Selinger RLB; Selinger JV Soft Matter; 2021 Mar; 17(8):2265-2278. PubMed ID: 33471022 [TBL] [Abstract][Full Text] [Related]
22. Nematic liquid crystals on sinusoidal channels: the zigzag instability. Silvestre NM; Romero-Enrique JM; Telo da Gama MM J Phys Condens Matter; 2017 Jan; 29(1):014004. PubMed ID: 27830658 [TBL] [Abstract][Full Text] [Related]
23. Fluctuations of topological disclination lines in nematic liquid crystals: renormalization of the string model. Svensek D; Zumer S Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 1):040701. PubMed ID: 15600388 [TBL] [Abstract][Full Text] [Related]
24. Anisotropic nanoparticles immersed in a nematic liquid crystal: defect structures and potentials of mean force. Hung FR; Guzmán O; Gettelfinger BT; Abbott NL; de Pablo JJ Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 1):011711. PubMed ID: 16907115 [TBL] [Abstract][Full Text] [Related]
25. Patterned surface anchoring of nematic droplets at miscible liquid-liquid interfaces. Wang X; Zhou Y; Kim YK; Miller DS; Zhang R; Martinez-Gonzalez JA; Bukusoglu E; Zhang B; Brown TM; de Pablo JJ; Abbott NL Soft Matter; 2017 Aug; 13(34):5714-5723. PubMed ID: 28752888 [TBL] [Abstract][Full Text] [Related]
26. Trapping of isotropic droplets by disclinations in nematic liquid crystals controlled by surface anchoring and elastic constant disparity. Haputhanthrige NP; Paladugu S; Lavrentovich MO; Lavrentovich OD Phys Rev E; 2024 Jun; 109(6-1):064703. PubMed ID: 39020964 [TBL] [Abstract][Full Text] [Related]
27. Controlled deformation of vesicles by flexible structured media. Zhang R; Zhou Y; Martínez-González JA; Hernández-Ortiz JP; Abbott NL; de Pablo JJ Sci Adv; 2016 Aug; 2(8):e1600978. PubMed ID: 27532056 [TBL] [Abstract][Full Text] [Related]
28. Dynamics of order reconstruction in a nanoconfined nematic liquid crystal with a topological defect. Zhou X; Zhang Z Int J Mol Sci; 2013 Dec; 14(12):24135-53. PubMed ID: 24351807 [TBL] [Abstract][Full Text] [Related]
29. Biaxial torus around nematic point defects. Kralj S; Virga EG; Zumer S Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Aug; 60(2 Pt B):1858-66. PubMed ID: 11969973 [TBL] [Abstract][Full Text] [Related]
30. A Landau-de Gennes theory for twist-bend and splay-bend nematic phases of colloidal suspensions of bent rods. Anzivino C; van Roij R; Dijkstra M J Chem Phys; 2020 Jun; 152(22):224502. PubMed ID: 32534541 [TBL] [Abstract][Full Text] [Related]
31. Core hysteresis in nematic defects. Kralj S; Virga EG Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 1):021703. PubMed ID: 12241192 [TBL] [Abstract][Full Text] [Related]
32. Frank elasticity of composite colloidal nematics with anti-nematic order. Wensink HH Soft Matter; 2018 Nov; 14(44):8935-8944. PubMed ID: 30379187 [TBL] [Abstract][Full Text] [Related]
33. Molecular-field-theory approach to the Landau theory of liquid crystals: uniaxial and biaxial nematics. Luckhurst GR; Naemura S; Sluckin TJ; Thomas KS; Turzi SS Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031705. PubMed ID: 22587112 [TBL] [Abstract][Full Text] [Related]
34. Retrieving the saddle-splay elastic constant K24 of nematic liquid crystals from an algebraic approach. Fumeron S; Moraes F; Pereira E Eur Phys J E Soft Matter; 2016 Sep; 39(9):83. PubMed ID: 27589980 [TBL] [Abstract][Full Text] [Related]
35. Interaction between a disclination and a uniaxial-isotropic phase interface in a nematic liquid crystal. Shklyaev OE; Fried E J Colloid Interface Sci; 2008 Jan; 317(1):298-313. PubMed ID: 17945248 [TBL] [Abstract][Full Text] [Related]
36. Order Reconstruction in a Nanoconfined Nematic Liquid Crystal between Two Coaxial Cylinders. Zhou X; Zhang Z; Zhang Q; Ye W Materials (Basel); 2015 Nov; 8(12):8072-8086. PubMed ID: 28793698 [TBL] [Abstract][Full Text] [Related]
37. Simulation of cholesteric blue phases using a Landau-de Gennes theory: effect of an applied electric field. Fukuda J; Yoneya M; Yokoyama H Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 1):031706. PubMed ID: 19905130 [TBL] [Abstract][Full Text] [Related]