These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 32794947)
1. Jump intermittency as a second type of transition to and from generalized synchronization. Koronovskii AA; Moskalenko OI; Pivovarov AA; Khanadeev VA; Hramov AE; Pisarchik AN Phys Rev E; 2020 Jul; 102(1-1):012205. PubMed ID: 32794947 [TBL] [Abstract][Full Text] [Related]
2. Intermittent route to generalized synchronization in bidirectionally coupled chaotic oscillators. Koronovskii AA; Moskalenko OI; Pivovarov AA; Evstifeev EV Chaos; 2020 Aug; 30(8):083133. PubMed ID: 32872830 [TBL] [Abstract][Full Text] [Related]
3. Transition to intermittent chaotic synchronization. Zhao L; Lai YC; Shih CW Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036212. PubMed ID: 16241553 [TBL] [Abstract][Full Text] [Related]
4. Collective dynamics of coupled Lorenz oscillators near the Hopf boundary: Intermittency and chimera states. Khatun AA; Muthanna YA; Punetha N; Jafri HH Phys Rev E; 2024 Mar; 109(3-1):034208. PubMed ID: 38632727 [TBL] [Abstract][Full Text] [Related]
5. Synchronization of coupled bistable chaotic systems: experimental study. Pisarchik AN; Jaimes-Reátegui R; García-López JH Philos Trans A Math Phys Eng Sci; 2008 Feb; 366(1864):459-73. PubMed ID: 17681912 [TBL] [Abstract][Full Text] [Related]
6. Ring intermittency in coupled chaotic oscillators at the boundary of phase synchronization. Hramov AE; Koronovskii AA; Kurovskaya MK; Boccaletti S Phys Rev Lett; 2006 Sep; 97(11):114101. PubMed ID: 17025889 [TBL] [Abstract][Full Text] [Related]
7. Synchronization transition from chaos to limit cycle oscillations when a locally coupled chaotic oscillator grid is coupled globally to another chaotic oscillator. Godavarthi V; Kasthuri P; Mondal S; Sujith RI; Marwan N; Kurths J Chaos; 2020 Mar; 30(3):033121. PubMed ID: 32237762 [TBL] [Abstract][Full Text] [Related]
8. Inapplicability of an auxiliary-system approach to chaotic oscillators with mutual-type coupling and complex networks. Moskalenko OI; Koronovskii AA; Hramov AE Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):064901. PubMed ID: 23848814 [TBL] [Abstract][Full Text] [Related]
9. Intermittency transition to generalized synchronization in coupled time-delay systems. Senthilkumar DV; Lakshmanan M Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 2):066210. PubMed ID: 18233907 [TBL] [Abstract][Full Text] [Related]
10. Chaotic transition in a three-coupled phase-locked loop system. Tsuruda H; Shirahama H; Fukushima K; Nagadome M; Inoue M Chaos; 2001 Jun; 11(2):410-416. PubMed ID: 12779476 [TBL] [Abstract][Full Text] [Related]
11. Phase multistability and phase synchronization in an array of locally coupled period-doubling oscillators. Shabunin A; Feudel U; Astakhov V Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026211. PubMed ID: 19792235 [TBL] [Abstract][Full Text] [Related]
12. Synchronization of chaotic systems with coexisting attractors. Pisarchik AN; Jaimes-Reátegui R; Villalobos-Salazar JR; García-López JH; Boccaletti S Phys Rev Lett; 2006 Jun; 96(24):244102. PubMed ID: 16907245 [TBL] [Abstract][Full Text] [Related]
13. Limits to detection of generalized synchronization in delay-coupled chaotic oscillators. Kato H; Soriano MC; Pereda E; Fischer I; Mirasso CR Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062924. PubMed ID: 24483548 [TBL] [Abstract][Full Text] [Related]
14. On multistability near the boundary of generalized synchronization in unidirectionally coupled chaotic systems. Moskalenko OI; Koronovskii AA; Selskii AO; Evstifeev EV Chaos; 2021 Aug; 31(8):083106. PubMed ID: 34470237 [TBL] [Abstract][Full Text] [Related]
15. Ring intermittency near the boundary of the synchronous time scales of chaotic oscillators. Zhuravlev MO; Koronovskii AA; Moskalenko OI; Ovchinnikov AA; Hramov AE Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Feb; 83(2 Pt 2):027201. PubMed ID: 21405931 [TBL] [Abstract][Full Text] [Related]
16. Intermittent generalized synchronization and modified system approach: Discrete maps. Koronovskii AA; Moskalenko OI; Selskii AO Phys Rev E; 2024 Jun; 109(6-1):064217. PubMed ID: 39020896 [TBL] [Abstract][Full Text] [Related]
17. An approach to chaotic synchronization. Hramov AE; Koronovskii AA Chaos; 2004 Sep; 14(3):603-10. PubMed ID: 15446970 [TBL] [Abstract][Full Text] [Related]
18. Master-slave synchronization in chaotic discrete-time oscillators. Schwarz J; Klotz A; Bräuer K; Stevens A Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 1):011108. PubMed ID: 11461226 [TBL] [Abstract][Full Text] [Related]
20. Transition from intermittency to periodicity in lag synchronization in coupled Rössler oscillators. Zhan M; Wei GW; Lai CH Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 2A):036202. PubMed ID: 11909207 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]