These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 32794960)
1. Performance of quantum heat engines under the influence of long-range interactions. Wang Q Phys Rev E; 2020 Jul; 102(1-1):012138. PubMed ID: 32794960 [TBL] [Abstract][Full Text] [Related]
2. Quantum Heat Engines with Complex Working Media, Complete Otto Cycles and Heuristics. Johal RS; Mehta V Entropy (Basel); 2021 Sep; 23(9):. PubMed ID: 34573774 [TBL] [Abstract][Full Text] [Related]
3. Finite-power performance of quantum heat engines in linear response. Liu Q; He J; Ma Y; Wang J Phys Rev E; 2019 Jul; 100(1-1):012105. PubMed ID: 31499858 [TBL] [Abstract][Full Text] [Related]
4. Space-fractional quantum heat engine based on level degeneracy. Aydiner E Sci Rep; 2021 Sep; 11(1):17901. PubMed ID: 34504180 [TBL] [Abstract][Full Text] [Related]
5. Temperature-dependent maximization of work and efficiency in a degeneracy-assisted quantum Stirling heat engine. Chatterjee S; Koner A; Chatterjee S; Kumar C Phys Rev E; 2021 Jun; 103(6-1):062109. PubMed ID: 34271723 [TBL] [Abstract][Full Text] [Related]
6. Performance Analysis and Optimization for Irreversible Combined Carnot Heat Engine Working with Ideal Quantum Gases. Chen L; Meng Z; Ge Y; Wu F Entropy (Basel); 2021 Apr; 23(5):. PubMed ID: 33925622 [TBL] [Abstract][Full Text] [Related]
7. Quantum thermodynamic cycles and quantum heat engines. Quan HT; Liu YX; Sun CP; Nori F Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 1):031105. PubMed ID: 17930197 [TBL] [Abstract][Full Text] [Related]
8. Boosting the performance of quantum Otto heat engines. Chen JF; Sun CP; Dong H Phys Rev E; 2019 Sep; 100(3-1):032144. PubMed ID: 31640026 [TBL] [Abstract][Full Text] [Related]
9. Bosons outperform fermions: The thermodynamic advantage of symmetry. Myers NM; Deffner S Phys Rev E; 2020 Jan; 101(1-1):012110. PubMed ID: 32069543 [TBL] [Abstract][Full Text] [Related]
10. Bound on Efficiency of Heat Engine from Uncertainty Relation Viewpoint. Chattopadhyay P; Mitra A; Paul G; Zarikas V Entropy (Basel); 2021 Apr; 23(4):. PubMed ID: 33918678 [TBL] [Abstract][Full Text] [Related]
11. Quantum mechanical bound for efficiency of quantum Otto heat engine. Park JM; Lee S; Chun HM; Noh JD Phys Rev E; 2019 Jul; 100(1-1):012148. PubMed ID: 31499873 [TBL] [Abstract][Full Text] [Related]
12. Non-Markovian thermal operations boosting the performance of quantum heat engines. Ptaszyński K Phys Rev E; 2022 Jul; 106(1-1):014114. PubMed ID: 35974499 [TBL] [Abstract][Full Text] [Related]
13. Geometric Bound on the Efficiency of Irreversible Thermodynamic Cycles. Frim AG; DeWeese MR Phys Rev Lett; 2022 Jun; 128(23):230601. PubMed ID: 35749204 [TBL] [Abstract][Full Text] [Related]
14. Quantum Otto engine working with interacting spin systems: Finite power performance in stochastic thermodynamics. Hong Y; Xiao Y; He J; Wang J Phys Rev E; 2020 Aug; 102(2-1):022143. PubMed ID: 32942459 [TBL] [Abstract][Full Text] [Related]
16. Work and power fluctuations in a critical heat engine. Holubec V; Ryabov A Phys Rev E; 2017 Sep; 96(3-1):030102. PubMed ID: 29347002 [TBL] [Abstract][Full Text] [Related]
17. General formalism of local thermodynamics with an example: Quantum Otto engine with a spin-1/2 coupled to an arbitrary spin. Altintas F; Müstecaplıoğlu ÖE Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022142. PubMed ID: 26382378 [TBL] [Abstract][Full Text] [Related]
18. Otto Engine: Classical and Quantum Approach. Peña FJ; Negrete O; Cortés N; Vargas P Entropy (Basel); 2020 Jul; 22(7):. PubMed ID: 33286527 [TBL] [Abstract][Full Text] [Related]
19. Bounds on nonequilibrium fluctuations for asymmetrically driven quantum Otto engines. Mohanta S; Saha M; Venkatesh BP; Agarwalla BK Phys Rev E; 2023 Jul; 108(1-1):014118. PubMed ID: 37583162 [TBL] [Abstract][Full Text] [Related]
20. Finite-time quantum Otto engine: Surpassing the quasistatic efficiency due to friction. Lee S; Ha M; Park JM; Jeong H Phys Rev E; 2020 Feb; 101(2-1):022127. PubMed ID: 32168587 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]