These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 32794963)

  • 1. Effective temperatures in inhomogeneous passive and active bidimensional Brownian particle systems.
    Petrelli I; Cugliandolo LF; Gonnella G; Suma A
    Phys Rev E; 2020 Jul; 102(1-1):012609. PubMed ID: 32794963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of a homogeneous active dumbbell system.
    Suma A; Gonnella G; Laghezza G; Lamura A; Mossa A; Cugliandolo LF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052130. PubMed ID: 25493762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effective temperature for the thermal fluctuations in hot Brownian motion.
    Srivastava M; Chakraborty D
    J Chem Phys; 2018 May; 148(20):204902. PubMed ID: 29865851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluctuation-dissipation relation and stationary distribution of an exactly solvable many-particle model for active biomatter far from equilibrium.
    Netz RR
    J Chem Phys; 2018 May; 148(18):185101. PubMed ID: 29764155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluctuation dissipation relations in stationary states of interacting Brownian particles under shear.
    Krüger M; Fuchs M
    Phys Rev Lett; 2009 Apr; 102(13):135701. PubMed ID: 19392369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glassy dynamics of Brownian particles with velocity-dependent friction.
    Yazdi A; Sperl M
    Phys Rev E; 2016 Sep; 94(3-1):032602. PubMed ID: 27739784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonequilibrium Brownian motion beyond the effective temperature.
    Gnoli A; Puglisi A; Sarracino A; Vulpiani A
    PLoS One; 2014; 9(4):e93720. PubMed ID: 24714671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluctuation Theorems for Heat Exchanges between Passive and Active Baths.
    Semeraro M; Suma A; Negro G
    Entropy (Basel); 2024 May; 26(6):. PubMed ID: 38920448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase behaviour and dynamical features of a two-dimensional binary mixture of active/passive spherical particles.
    Rogel Rodriguez D; Alarcon F; Martinez R; Ramírez J; Valeriani C
    Soft Matter; 2020 Feb; 16(5):1162-1169. PubMed ID: 31913382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A theory for the phase behavior of mixtures of active particles.
    Takatori SC; Brady JF
    Soft Matter; 2015 Oct; 11(40):7920-31. PubMed ID: 26323207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stochastic resetting of active Brownian particles with Lorentz force.
    Abdoli I; Sharma A
    Soft Matter; 2021 Feb; 17(5):1307-1316. PubMed ID: 33313625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum chaotic fluctuation-dissipation theorem: Effective Brownian motion in closed quantum systems.
    Nation C; Porras D
    Phys Rev E; 2019 May; 99(5-1):052139. PubMed ID: 31212464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Active noise experienced by a passive particle trapped in an active bath.
    Ye S; Liu P; Ye F; Chen K; Yang M
    Soft Matter; 2020 May; 16(19):4655-4660. PubMed ID: 32373861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effective temperatures of a driven, strongly anisotropic Brownian system.
    Zhang M; Szamel G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061407. PubMed ID: 21797364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase transition and emergence of active temperature in an active Brownian system in underdamped background.
    De Karmakar S; Ganesh R
    Phys Rev E; 2020 Mar; 101(3-1):032121. PubMed ID: 32290015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effective temperature of active fluids and sheared soft glassy materials.
    Nandi SK; Gov NS
    Eur Phys J E Soft Matter; 2018 Oct; 41(10):117. PubMed ID: 30302578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonequilibrium fluctuation-dissipation relations of interacting Brownian particles driven by shear.
    Krüger M; Fuchs M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011408. PubMed ID: 20365374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Approach to equilibrium and nonequilibrium stationary distributions of interacting many-particle systems that are coupled to different heat baths.
    Netz RR
    Phys Rev E; 2020 Feb; 101(2-1):022120. PubMed ID: 32168558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-diffusion in sheared colloidal suspensions: violation of fluctuation-dissipation relation.
    Szamel G
    Phys Rev Lett; 2004 Oct; 93(17):178301. PubMed ID: 15525131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Langevin dynamics in inhomogeneous media: re-examining the Itô-Stratonovich dilemma.
    Farago O; Grønbech-Jensen N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):013301. PubMed ID: 24580354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.