These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
346 related articles for article (PubMed ID: 32794968)
1. Dynamics of the generalized Kuramoto model with nonlinear coupling: Bifurcation and stability. Zou W; Wang J Phys Rev E; 2020 Jul; 102(1-1):012219. PubMed ID: 32794968 [TBL] [Abstract][Full Text] [Related]
2. Phase diagram of a generalized Winfree model. Giannuzzi F; Marinazzo D; Nardulli G; Pellicoro M; Stramaglia S Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051104. PubMed ID: 17677019 [TBL] [Abstract][Full Text] [Related]
3. Phase transitions in an adaptive network with the global order parameter adaptation. Manoranjani M; Saiprasad VR; Gopal R; Senthilkumar DV; Chandrasekar VK Phys Rev E; 2023 Oct; 108(4-1):044307. PubMed ID: 37978685 [TBL] [Abstract][Full Text] [Related]
4. Bifurcations in the Kuramoto model on graphs. Chiba H; Medvedev GS; Mizuhara MS Chaos; 2018 Jul; 28(7):073109. PubMed ID: 30070519 [TBL] [Abstract][Full Text] [Related]
5. Nonuniversal transitions to synchrony in the Sakaguchi-Kuramoto model. Omel'chenko OE; Wolfrum M Phys Rev Lett; 2012 Oct; 109(16):164101. PubMed ID: 23215080 [TBL] [Abstract][Full Text] [Related]
6. Spatiotemporal dynamics of the Kuramoto-Sakaguchi model with time-dependent connectivity. Banerjee A; Acharyya M Phys Rev E; 2016 Aug; 94(2-1):022213. PubMed ID: 27627304 [TBL] [Abstract][Full Text] [Related]
7. Rotating clusters in phase-lagged Kuramoto oscillators with higher-order interactions. Moyal B; Rajwani P; Dutta S; Jalan S Phys Rev E; 2024 Mar; 109(3-1):034211. PubMed ID: 38632814 [TBL] [Abstract][Full Text] [Related]
8. Clustering and Bellerophon state in Kuramoto model with second-order coupling. Li X; Zhang J; Zou Y; Guan S Chaos; 2019 Apr; 29(4):043102. PubMed ID: 31042952 [TBL] [Abstract][Full Text] [Related]
9. Twisted states in nonlocally coupled phase oscillators with frequency distribution consisting of two Lorentzian distributions with the same mean frequency and different widths. Xie Y; Zhang L; Guo S; Dai Q; Yang J PLoS One; 2019; 14(3):e0213471. PubMed ID: 30861016 [TBL] [Abstract][Full Text] [Related]
10. Exact explosive synchronization transitions in Kuramoto oscillators with time-delayed coupling. Wu H; Kang L; Liu Z; Dhamala M Sci Rep; 2018 Oct; 8(1):15521. PubMed ID: 30341395 [TBL] [Abstract][Full Text] [Related]
11. Synchronization of phase oscillators with frequency-weighted coupling. Xu C; Sun Y; Gao J; Qiu T; Zheng Z; Guan S Sci Rep; 2016 Feb; 6():21926. PubMed ID: 26903110 [TBL] [Abstract][Full Text] [Related]
12. Transition to synchrony in degree-frequency correlated Sakaguchi-Kuramoto model. Kundu P; Khanra P; Hens C; Pal P Phys Rev E; 2017 Nov; 96(5-1):052216. PubMed ID: 29347755 [TBL] [Abstract][Full Text] [Related]
13. Linear reformulation of the Kuramoto model of self-synchronizing coupled oscillators. Roberts DC Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031114. PubMed ID: 18517336 [TBL] [Abstract][Full Text] [Related]
14. Stability and bifurcation of collective dynamics in phase oscillator populations with general coupling. Xu C; Wang X; Zheng Z; Cai Z Phys Rev E; 2021 Mar; 103(3-1):032307. PubMed ID: 33862749 [TBL] [Abstract][Full Text] [Related]
15. Exact results for the Kuramoto model with a bimodal frequency distribution. Martens EA; Barreto E; Strogatz SH; Ott E; So P; Antonsen TM Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 2):026204. PubMed ID: 19391817 [TBL] [Abstract][Full Text] [Related]
16. Exact solution for first-order synchronization transition in a generalized Kuramoto model. Hu X; Boccaletti S; Huang W; Zhang X; Liu Z; Guan S; Lai CH Sci Rep; 2014 Dec; 4():7262. PubMed ID: 25434404 [TBL] [Abstract][Full Text] [Related]
17. Effect of higher-order interactions on chimera states in two populations of Kuramoto oscillators. Kar R; Yadav A; Chandrasekar VK; Senthilkumar DV Chaos; 2024 Feb; 34(2):. PubMed ID: 38363957 [TBL] [Abstract][Full Text] [Related]
18. Ott-Antonsen ansatz for the D-dimensional Kuramoto model: A constructive approach. Barioni AED; de Aguiar MAM Chaos; 2021 Nov; 31(11):113141. PubMed ID: 34881619 [TBL] [Abstract][Full Text] [Related]
19. Hysteretic transitions in the Kuramoto model with inertia. Olmi S; Navas A; Boccaletti S; Torcini A Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042905. PubMed ID: 25375565 [TBL] [Abstract][Full Text] [Related]
20. Synchronization transitions in adaptive Kuramoto-Sakaguchi oscillators with higher-order interactions. Sharma A; Rajwani P; Jalan S Chaos; 2024 Aug; 34(8):. PubMed ID: 39213012 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]