These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 32794987)

  • 1. Mesoscopic method to study water flow in nanochannels with different wettability.
    Zhang T; Javadpour F; Li X; Wu K; Li J; Yin Y
    Phys Rev E; 2020 Jul; 102(1-1):013306. PubMed ID: 32794987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime: Application to plane boundaries.
    Silva G; Semiao V
    Phys Rev E; 2017 Jul; 96(1-1):013311. PubMed ID: 29347253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime. II. Application to curved boundaries.
    Silva G
    Phys Rev E; 2018 Aug; 98(2-1):023302. PubMed ID: 30253480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extending the Classical Continuum Theory to Describe Water Flow through Two-Dimensional Nanopores.
    Sun C; Zhou R; Zhao Z; Bai B
    Langmuir; 2021 May; 37(20):6158-6167. PubMed ID: 33969992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wettability effect on nanoconfined water flow.
    Wu K; Chen Z; Li J; Li X; Xu J; Dong X
    Proc Natl Acad Sci U S A; 2017 Mar; 114(13):3358-3363. PubMed ID: 28289228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slip length of water on graphene: limitations of non-equilibrium molecular dynamics simulations.
    Kannam SK; Todd BD; Hansen JS; Daivis PJ
    J Chem Phys; 2012 Jan; 136(2):024705. PubMed ID: 22260608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of Water Flow in a Nanochannel with a Sudden Contraction or Expansion.
    Zhang T; Zhang B; Zhao Y; Javadpour F; He X; Ge F; Wu J; Zhang D
    Langmuir; 2022 May; 38(21):6720-6730. PubMed ID: 35584361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow of methane in shale nanopores at low and high pressure by molecular dynamics simulations.
    Jin Z; Firoozabadi A
    J Chem Phys; 2015 Sep; 143(10):104315. PubMed ID: 26374043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water flow enhancement in hydrophilic nanochannels.
    Lee KP; Leese H; Mattia D
    Nanoscale; 2012 Apr; 4(8):2621-7. PubMed ID: 22415711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrokinetic transport through nanochannels.
    Movahed S; Li D
    Electrophoresis; 2011 Jun; 32(11):1259-67. PubMed ID: 21538982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supercritical CO
    Ho TA; Wang Y; Ilgen A; Criscenti LJ; Tenney CM
    Nanoscale; 2018 Nov; 10(42):19957-19963. PubMed ID: 30349913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lattice Boltzmann Simulation of the Hydrodynamic Entrance Region of Rectangular Microchannels in the Slip Regime.
    Ma N; Duan Z; Ma H; Su L; Liang P; Ning X; He B; Zhang X
    Micromachines (Basel); 2018 Feb; 9(2):. PubMed ID: 30393363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular Insights into the Wall Slip Behavior of Pseudoplastic Polymer Melt in Nanochannels during Micro Injection Molding.
    Wu W; Duan F; Zhao B; Qiang Y; Zhou M; Jiang B
    Polymers (Basel); 2022 Aug; 14(15):. PubMed ID: 35956732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of Solid Wall Properties in the Interface Slip of Liquid in Nanochannels.
    Gao W; Zhang X; Han X; Shen C
    Micromachines (Basel); 2018 Dec; 9(12):. PubMed ID: 30558345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mesoscopic Fluid-Particle Flow and Vortex Structural Transmission in a Submerged Entry Nozzle of Continuous Caster.
    Zhao P; Piao R; Zou Z
    Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring Anomalous Fluid Behavior at the Nanoscale: Direct Visualization and Quantification via Nanofluidic Devices.
    Zhong J; Alibakhshi MA; Xie Q; Riordon J; Xu Y; Duan C; Sinton D
    Acc Chem Res; 2020 Feb; 53(2):347-357. PubMed ID: 31922716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative study of the discrete velocity and lattice Boltzmann methods for rarefied gas flows through irregular channels.
    Su W; Lindsay S; Liu H; Wu L
    Phys Rev E; 2017 Aug; 96(2-1):023309. PubMed ID: 28950559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of nanochannel dimension on the transport of water molecules.
    Su J; Guo H
    J Phys Chem B; 2012 May; 116(20):5925-32. PubMed ID: 22448756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics simulation of nanochannel flows with effects of wall lattice-fluid interactions.
    Soong CY; Yen TH; Tzeng PY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 2):036303. PubMed ID: 17930337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Dynamics Simulations of Ion Drift in Nanochannel Water Flow.
    Sofos F; Karakasidis T; Sarris IE
    Nanomaterials (Basel); 2020 Nov; 10(12):. PubMed ID: 33260616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.